960 resultados para seawater desalination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desalination of groundwater is essential in many arid areas that are far from both seawater and fresh water resources. The ideal groundwater desalination system should operate using a sustainable energy source and provide high water output per land area and cost. To avoid discharging voluminous brine, it should also provide high recovery. To achieve these aims, we have designed DesaLink, a novel approach to linking the solar Rankine cycle to reverse osmosis (RO). To achieve high recovery without the need for multiple RO stages, DesaLink adopts a batch mode of operation. It is suited to use with a variety of solar thermal collectors including linear Fresnel reflectors (LFR). For example, using a LFR occupying 1,000m of land and providing steam at 200°C and 15.5 bar, DesaLink is predicted to provide 350m of fresh water per day at a recovery ratio of 0.7, when fed with brackish groundwater containing 5,000ppm of sodium chloride. Here, we report preliminary experiments to assess the feasibility of the concept. We study the effects of longitudinal dispersion, concentration polarisation and describe a pilot experiment to demonstrate the batch process using a materials testing machine. In addition, we demonstrate a prototype of DesaLink running from compressed air to simulate steam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desalination of brackish groundwater (BW) is an effective approach to augment water supply, especially for inland regions that are far from seawater resources. Brackish water reverse osmosis (BWRO) desalination is still subject to intensive energy consumption compared to the theoretical minimum energy demand. Here, we review some of the BWRO plants with various system arrangements. We look at how to minimize energy demands, as these contribute considerably to the cost of desalinated water. Different configurations of BWRO system have been compared from the view point of normalized specific energy consumption (SEC). Analysis is made at theoretical limits. The SEC reduction of BWRO can be achieved by (i) increasing number of stages, (ii) using an energy recovery device (ERD), or (iii) operating the BWRO in batch mode or closed circuit mode. Application of more stages not only reduces SEC but also improves water recovery. However, this improvement is less pronounced when the number of stages exceeds four. Alternatively and more favourably, the BWRO system can be operated in Closed Circuit Desalination (CCD) mode and gives a comparative SEC to that of the 3-stage system with a recovery ratio of 80%. A further reduction of about 30% in SEC can be achieved through batch-RO operation. Moreover, the costly ERDs and booster pumps are avoided with both CCD and batch-RO, thus furthering the effectiveness of lowering the costs of these innovative approaches. © 2012 by the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of using thermally activated hydrotalcite materials has been investigated for the removal of arsenate, vanadate, and molybdate in individual and mixed solutions. Results show that increasing the Mg,Al ratio to 4:1 causes an increase in the percentage of anions removed from solution. The order of affinity of the three anions analysed in this investigation is arsenate, vanadate, and molybdate. By comparisons with several synthetic hydrotalcite materials, the hydrotalcite structure in the seawater neutralised red mud (SWN-RM) has been determined to consist of magnesium and aluminium with a ratio between 3.5:1 and 4:1. Thermally activated seawater neutralised red mud removes at least twice the concentration of anionic species than thermally activated red mud alone, due to the formation of 40 to 60 % Bayer hydrotalcite during the neutralisation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar thermal membrane distillation pilot plant was operated for over 70 days in field conditions. The pilot plant incorporated a single spiral wound permeate gap membrane distillation style of module. All energy used to operate the unit was supplied by solar hot water collectors and photovoltaic panels. The process was able to produce a distillate stream of product water with a conductivity less than 10 µS/cm. Feed water concentration varied from 2,400 µS/cm to 106,000 µS/cm. The process is expected to find application in the production of drinking water for remote island and arid regions without the consumption of electrical energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation has demonstrated the need for thermal treatment of seawater neutralised red mud (SWRM) in order to obtain reasonable adsorption of Reactive Blue dye 19 (RB 19). Thermal treatment results in a greater surface area, which results in an increased adsorption capacity due to more available adsorption sites. Adsorption of RB 19 has been found to be best achieved in acidic conditions using SWNRM400 (heated to 400 �C) with an adsorption capacity of 416.7 mg/g compared to 250.0 mg/g for untreated SWNRM. Kinetic studies indicate a pseudosecond-order reaction mechanism is responsible for the adsorption of RB 19 using SWNRM, which indicates adsorption occurs by electrostatic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, open circuit Bayer refineries pump seawater directly into their operations to neutralize the caustic fraction of the Bayer residue. The resulting supernatant has a reduced pH and is pumped back to the marine environment. This investigation has assessed modified seawater sources generated from nanofiltration processes to compare their relative capacities to neutralize bauxite residues. An assessment of the chemical stability of the neutralization products, neutralization efficiency, discharge water quality, bauxite residue composition, and associated economic benefits have been considered to determine the most preferable seawater filtration process based on implementation costs, savings to operations and environmental benefits. The mechanism of neutralization for each technology was determined to be predominately due to the formation of Bayer hydrotalcite and calcium carbonate, however variations in neutralization capacity and efficiencies have been observed. The neutralization efficiency of each feed source has been found to be dependent on the concentration of magnesium, aluminium, calcium and carbonate. Nanofiltered seawater with approximately double the amount of magnesium and calcium required half the volume of seawater to achieve the same degree of neutralization. These studies have revealed that multiple neutralization steps occur throughout the process using characterization techniques such as X-ray diffraction (XRD), infrared (IR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bauxite refinery residues are derived from the Bayer process by the digestion of crushed bauxite in concentrated caustic at elevated temperatures. Chemically, it comprises, in varying amounts (depending upon the composition of the starting bauxite), oxides of iron and titanium, residual alumina, sodalite, silica, and minor quantities of other metal oxides. Bauxite residues are being neutralised by seawater in recent years to reduce the alkalinity in bauxite residue, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. A combination of X-ray diffraction (XRD) and vibrational spectroscopy techniques, including mid-infrared (IR), Raman, near-infrared (NIR), and UV-Visible, have been used to characterise bauxite residue and seawater neutralised bauxite residue. Both the ferrous (Fe2+) and ferric (Fe3+) ions within bauxite residue can be identified by their characteristic NIR bands, where ferrous ions produce a strong absorption band at around 9000 cm-1, while ferric ions produce two strong bands at 25000 and 14300 cm-1. The presence of adsorbed carbonate and hydroxide anions can be identified at around 5200 and 7000 cm-1, respectively, attributed to the 2nd overtone of the 1st fundamental overtones observed in the mid-IR spectra. The complex bands in the Raman and mid-IR spectra around 3500 cm-1 are assigned to the OH stretching vibrations of the various oxides present in bauxite residue, and water. The combination of carbonate and hydroxyl units and their fundamental overtones give rise to many of the features of the NIR spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tricalcium aluminate, hydrocalumite and residual lime have been identified as reversion contributing compounds after the seawater neutralisation of bauxite refinery residues. The formation of these compounds during the neutralisation process is dependent on the concentration of residual lime, pH and aluminate concentrations in the residue slurry. Therefore, the effect of calcium hydroxide (CaOH2) in bauxite refinery liquors was analysed and the degree of reversion monitored. This investigation found that the dissolution of tricalcium aluminate, hydrocalumite and CaOH2 caused reversion and continued to increase the pH of the neutralised residue until a state of equilibrium was reached at a solution pH of 10.5. The dissolution mechanism for each compound has been described and used to demonstrate the implications that this has on reversion in seawater neutralised Bayer liquor. This investigation describes the limiting factors for the dissolution and formation of these trigger compounds as well as confirming the formation of Bayer hydrotalcite (mixture of Mg6Al2(OH)16(CO32-,SO42-)•xH2O and Mg8Al2(OH)12(CO32-,SO42-)•xH2O) as the primary mechanism for reducing reversion during the neutralisation process. This knowledge then allowed for a simple but effective method (addition of magnesium chloride or increased seawater to Bayer liquor ratio) to be devised to reduce reversion occurring after the neutralisation of Bayer liquors. Both methods utilise the formation of Bayer hydrotalcite to permanently (stable in neutralised residue) remove hydroxyl (OH-) and aluminate (Al(OH)4-) ions from solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. © 2013 Macmillan Publishers Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solar-assisted heat pump (SAHP) desalination, based on the Rankin cycle, operates in low temperature and utilizes both solar and ambient energy. An experimental SAHP desalination system has been constructed at the National University of Singapore, Singapore. The system consisted of two main sections: an SAHP and a water distillation section. Experiments were carried out under the different meteorological condition of Singapore and results showed that the system had a performance ratio close to 1.3. The heat pump has a coefficient of performance of about 8, with solar collector efficiencies of 80% and 60% for evaporator and liquid collectors, respectively. Economic analysis showed that at a production rate of 900 L/day and an evaporator collector area of around 70m2 will have a payback period of about 3.5 years.