63 resultados para schedulability
Resumo:
We propose a schedulability analysis for a particular class of time division multiple access (TDMA) networks, which we label as TDMA/SS. SS stands for slot skipping, reflecting the fact that a slot is skipped whenever it is not used. Hence, the next slot can start earlier in benefit of hard real-time traffic. In the proposed schedulability analysis, we assume knowledge of all message streams in the system, and that each node schedules messages in its output queue according to a rate monotonic policy (as an example). We present the analysis in two steps. Firstly, we address the case where a node is only permitted to transmit a maximum of one message per TDMA cycle. Secondly, we generalise the analysis to the case where a node is assigned a budget of messages per TDMA cycle it may transmit. A simple algorithm to assign budgets to nodes is also presented.
Resumo:
Consider the problem of scheduling sporadic messages with deadlines on a wireless channel. We propose a collision-free medium access control (MAC) protocol which implements static-priority scheduling and present a schedulability analysis technique for the protocol. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.
Resumo:
In this paper we survey the most relevant results for the prioritybased schedulability analysis of real-time tasks, both for the fixed and dynamic priority assignment schemes. We give emphasis to the worst-case response time analysis in non-preemptive contexts, which is fundamental for the communication schedulability analysis. We define an architecture to support priority-based scheduling of messages at the application process level of a specific fieldbus communication network, the PROFIBUS. The proposed architecture improves the worst-case messages’ response time, overcoming the limitation of the first-come-first-served (FCFS) PROFIBUS queue implementations.
Resumo:
Controller area network (CAN) is a fieldbus network suitable for small-scale distributed computer controlled systems (DCCS), being appropriate for sending and receiving short real-time messages at speeds up to 1 Mbit/sec. Several studies are available on how to guarantee the real-time requirements of CAN messages, providing preruntime schedulability conditions to guarantee the real-time communication requirements of DCCS traffic. Usually, it is considered that CAN guarantees atomic multicast properties by means of its extensive error detection/signaling mechanisms. However, there are some error situations where messages can be delivered in duplicate or delivered only by a subset of the receivers, leading to inconsistencies in the supported applications. In order to prevent such inconsistencies, a middleware for reliable communication in CAN is proposed, taking advantage of CAN synchronous properties to minimize the runtime overhead. Such middleware comprises a set of atomic multicast and consolidation protocols, upon which the reliable communication properties are guaranteed. The related timing analysis demonstrates that, in spite of the extra stack of protocols, the real-time properties of CAN are preserved since the predictability of message transfer is guaranteed.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-controlled systems. Therefore they constitute the foundation upon which real-time applications are to be implemented. A potential leap towards the use of fieldbus in such time-critical applications lies in the evaluation of its temporal behaviour. In the past few years several research works have been performed on a number of fieldbuses. However, these have mostly focused on the message passing mechanisms, without taking into account the communicating application tasks running in those distributed systems. The main contribution of this paper is to provide an approach for engineering real-time fieldbus systems where the schedulability analysis of the distributed system integrates both the characteristics of the application tasks and the characteristics of the message transactions performed by these tasks. In particular, we address the case of system where the Process-Pascal multitasking language is used to develop P-NET based distributed applications
Resumo:
In this paper we address the real-time capabilities of P-NET, which is a multi-master fieldbus standard based on a virtual token passing scheme. We show how P-NET’s medium access control (MAC) protocol is able to guarantee a bounded access time to message requests. We then propose a model for implementing fixed prioritybased dispatching mechanisms at each master’s application level. In this way, we diminish the impact of the first-come-first-served (FCFS) policy that P-NET uses at the data link layer. The proposed model rises several issues well known within the real-time systems community: message release jitter; pre-run-time schedulability analysis in non pre-emptive contexts; non-independence of tasks at the application level. We identify these issues in the proposed model and show how results available for priority-based task dispatching can be adapted to encompass priority-based message dispatching in P-NET networks.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-controlled systems. Therefore, they constitute the foundation upon which real-time applications are to be implemented. A specific class of fieldbus communication networks is based on a simplified version of token-passing protocols, where each station may transfer, at most, a single message per token visit (SMTV). In this paper, we establish an analogy between non-preemptive task scheduling in single processors and the scheduling of messages on SMTV token-passing networks. Moreover, we clearly show that concepts such as blocking and interference in non-preemptive task scheduling have their counterparts in the scheduling of messages on SMTV token-passing networks. Based on this task/message scheduling analogy, we provide pre-run-time schedulability conditions for supporting real-time messages with SMTV token-passing networks. We provide both utilisation-based and response time tests to perform the pre-run-time schedulability analysis of real-time messages on SMTV token-passing networks, considering RM/DM (rate monotonic/deadline monotonic) and EDF (earliest deadline first) priority assignment schemes
Resumo:
In this paper we address the P-NET Medium Access Control (MAC) ability to schedule traffic according to its real-time requirements, in order to support real-time distributed applications. We provide a schedulability analysis based on the P-NET standard, and propose mechanisms to overcome priority inversion problems resulting from the use of FIFO outgoing buffers
Resumo:
WiDom is a wireless prioritized medium access control protocol which offers very large number of priority levels. Hence, it brings the potential to employ non-preemptive static-priority scheduling and schedulability analysis for a wireless channel assuming that the overhead of WiDom is modeled properly. Recent research has created a new version of WiDom (we call it: Slotted WiDom) which offers lower overhead compared to the previous version. In this paper we propose a new schedulability analysis for slotted WiDom and extend it to work for message streams with release jitter. Furthermore, to provide an accurate timing analysis, we must include the effect of transmission faults on message latencies. Thus, in the proposed analysis we consider the existence of different noise sources and develop the analysis for the case where messages are transmitted under noisy wireless channels. Evaluation of the proposed analysis is done by testing the slotted WiDom in two different modes on a real test-bed. The results from the experiments provide a firm validation on our findings.
Resumo:
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms to inter alia enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a huge overhead of device transition. The technology enhancement has allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring the system schedulability. Our results show an energy gain of up to 90% in the best case when compared to the state-of-the-art.
Resumo:
In real-time systems, there are two distinct trends for scheduling task sets on unicore systems: non-preemptive and preemptive scheduling. Non-preemptive scheduling is obviously not subject to any preemption delay but its schedulability may be quite poor, whereas fully preemptive scheduling is subject to preemption delay, but benefits from a higher flexibility in the scheduling decisions. The time-delay involved by task preemptions is a major source of pessimism in the analysis of the task Worst-Case Execution Time (WCET) in real-time systems. Preemptive scheduling policies including non-preemptive regions are a hybrid solution between non-preemptive and fully preemptive scheduling paradigms, which enables to conjugate both world's benefits. In this paper, we exploit the connection between the progression of a task in its operations, and the knowledge of the preemption delays as a function of its progression. The pessimism in the preemption delay estimation is then reduced in comparison to state of the art methods, due to the increase in information available in the analysis.
Resumo:
Known algorithms capable of scheduling implicit-deadline sporadic tasks over identical processors at up to 100% utilisation invariably involve numerous preemptions and migrations. To the challenge of devising a scheduling scheme with as few preemptions and migrations as possible, for a given guaranteed utilisation bound, we respond with the algorithm NPS-F. It is configurable with a parameter, trading off guaranteed schedulable utilisation (up to 100%) vs preemptions. For any possible configuration, NPS-F introduces fewer preemptions than any other known algorithm matching its utilisation bound. A clustered variant of the algorithm, for systems made of multicore chips, eliminates (costly) off-chip task migrations, by dividing processors into disjoint clusters, formed by cores on the same chip (with the cluster size being a parameter). Clusters are independently scheduled (each, using non-clustered NPS-F). The utilisation bound is only moderately affected. We also formulate an important extension (applicable to both clustered and non-clustered NPS-F) which optimises the supply of processing time to executing tasks and makes it more granular. This reduces processing capacity requirements for schedulability without increasing preemptions.
Resumo:
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms, inter alia to enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a very large overhead of device transitions. Technology enhancements have allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring system schedulability. Our results show an energy gain of up to 90% when compared to the techniques proposed in the state-of-the-art.
Resumo:
Consider a single processor and a software system. The software system comprises components and interfaces where each component has an associated interface and each component comprises a set of constrained-deadline sporadic tasks. A scheduling algorithm (called global scheduler) determines at each instant which component is active. The active component uses another scheduling algorithm (called local scheduler) to determine which task is selected for execution on the processor. The interface of a component makes certain information about a component visible to other components; the interfaces of all components are used for schedulability analysis. We address the problem of generating an interface for a component based on the tasks inside the component. We desire to (i) incur only a small loss in schedulability analysis due to the interface and (ii) ensure that the amount of space (counted in bits) of the interface is small; this is because such an interface hides as much details of the component as possible. We present an algorithm for generating such an interface.