940 resultados para scavenger receptors


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Increased advanced glycation end-products (AGEs) and their soluble receptors (sRAGE) have been implicated in the pathogenesis of pre-eclampsia (PE). However, this association has not been elucidated in pregnancies complicated by diabetes. We aimed to investigate the serum levels of these factors in pregnant women with Type 1 diabetes mellitus (T1DM), a condition associated with a four-fold increase in PE. Design Prospective study in women with T1DM at 12.2 ± 1.9, 21.6 ± 1.5 and 31.5 ± 1.7 weeks of gestation [mean ± standard deviation (SD); no overlap] before PE onset. Setting Antenatal clinics. Population Pregnant women with T1DM (n = 118; 26 developed PE) and healthy nondiabetic pregnant controls (n = 21). Methods Maternal serum levels of sRAGE (total circulating pool), N -(carboxymethyl)lysine (CML), hydroimidazolone (methylglyoxal-modified proteins) and total AGEs were measured by immunoassays. Main outcome measures Serum sRAGE and AGEs in pregnant women with T1DM who subsequently developed PE (DM PE+) versus those who remained normotensive (DM PE-). Results In DM PE+ versus DM PE-, sRAGE was significantly lower in the first and second trimesters, prior to the clinical manifestation of PE (P <0.05). Further, reflecting the net sRAGE scavenger capacity, sRAGE:hydroimidazolone was significantly lower in the second trimester (P <0.05) and sRAGE:AGE and sRAGE:CML tended to be lower in the first trimester (P <0.1) in women with T1DM who subsequently developed PE versus those who did not. These conclusions persisted after adjusting for prandial status, glycated haemoglobin (HbA1c), duration of diabetes, parity and mean arterial pressure as covariates. Conclusions In the early stages of pregnancy, lower circulating sRAGE levels, and the ratio of sRAGE to AGEs, may be associated with the subsequent development of PE in women with T1DM. © 2012 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The adventitia has been recognized to play important roles in vascular oxidative stress, remodelling and contraction. We recently demonstrated that adventitial fibroblasts are able to express endothelin-1 (ET-1) in response to angiotensin II (ANG II). However, the mechanisms by which ANG II induces ET-1 expression are unknown. It is also unclear whether the ET-1 receptors are expressed in the adventitia. We therefore examined the role of oxidative stress in the regulation of ET-1. We also investigated the expression of both the ETA and ETB receptors and the roles of these two types of receptors in collagen synthesis and ET-1 clearance in adventitial fibroblasts. Methods and Results: Adventitial fibroblasts were isolated and cultured from the thoracic mouse aorta. Cells were treated with ANG II (lOOnM), ET-1 (lOpM), NADPH oxidase inhibitor apocynin (lOOfiM), the superoxide anion scavenger tempol (lOOfiM), the ANG II receptor antagonists (100[aM), losartan (AT| receptor) and PD 1233 19 (AT2 receptor), the ET-1 receptor antagonists (lOOuM), BQ123 (ETA receptor) and BQ788 (ETB receptor), and the ETB receptor agonist (lOOnM) Sarafotoxin 6C. ET-1 peptide levels were determined by ELISA, while ETA ,ETB and collagen levels were determined by Western blot. ANG II increased ET-1 peptide levels in a time-dependent manner reaching significance when incubated for 24 hours. NAD(P)H oxidase inhibitor, apocynin, as well as the superoxide scanverger, tempol, significantly reduced ANG Il-induced ET-1 peptide levels while over-expression of SOD1 (endogenous antioxidant enzyme) significantly decreased ANG Il-induced collagen I expression, therefore implicating reactive oxygen species in the mediation of ET-1. ANG II increased ETA receptor protein as well as collagen in a similar fashion, reaching significance after 4, 6, and 24 hours treatment. ANG II induced collagen was reduced while in the presence of the ETA receptor antagonist suggesting the role of the ETa receptor in the regulation of the extracellular matrix. ANG II treatment also increased ETB receptor protein levels in a time-dependent manner. ANG II treatment in the presence of the ETB receptor antagonist significantly increased ET-1 peptide levels. On another hand, the ETB receptor agonist, Sarafotoxin 6C, significantly decreased ET-1 peptide levels. These data implicate the role of the ETb receptor in the clearance of the ET-1 peptide. Conclusion: ANG II-induced increases of ET-1 peptide appears to be mediated by reactive oxygen species derived from NAD(P)H oxidase. Both the ETA and ETB receptors are expressed in adventitial fibroblasts. The ETA receptor subtype mediates collagen I expression, while the ETB receptor may play a protective role through increasing the clearance of the ET- 1 peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous immature thymocytes undergo apoptosis and are rapidly engulfed by phagocytic thymic macrophages. The macrophage surface receptors involved in apoptotic thymocyte recognition are unknown. We have examined the role of the class A macrophage scavenger receptor (SR-A) in the engulfment of apoptotic thymocytes. Uptake of steroid-treated apoptotic thymocytes by thymic and inflammatory-elicited SR-A positive macrophages is partially inhibited by an anti-SR-A mAb and more completely by a range of scavenger receptor ligands. Thymic macrophages from mice with targeted disruption of the SR-A gene show a 50% reduction in phagocytosis of apoptotic thymocytes in vitro. These data suggest that SR-A may play a role in the clearance of dying cells in the thymus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ROLE OF LOW AFFINITY β1-ADRENERGIC RECEPTOR IN NORMAL AND DISEASED HEARTS Background: The β1-adrenergic receptor (AR) has at least two binding sites, 1HAR and 1LAR (high and low affinity site of the 1AR respectively) which cause cardiostimulation. Some β-blockers, for example (-)-pindolol and (-)-CGP 12177 can activate β1LAR at higher concentrations than those required to block β1HAR. While β1HAR can be blocked by all clinically used β-blockers, β1LAR is relatively resistant to blockade. Thus, chronic β1LAR activation may occur in the setting of β-blocker therapy, thereby mediating persistent βAR signaling. Thus, it is important to determine the potential significance of β1LAR in vivo, particularly in disease settings. Method and result: C57Bl/6 male mice were used. Chronic (4 weeks) β1LAR activation was achieved by treatment with (-)-CGP12177 via osmotic minipump. Cardiac function was assessed by echocardiography and catheterization. (-)-CGP12177 treatment in healthy mice increased heart rate and left ventricular (LV) contractility without detectable LV remodelling or hypertrophy. In mice subjected to an 8-week period of aorta banding, (-)-CGP12177 treatment given during 4-8 weeks led to a positive inotropic effect. (-)-CGP12177 treatment exacerbated LV remodelling indicated by a worsening of LV hypertrophy by ??% (estimated by weight, wall thickness, cardiomyocyte size) and interstitial/perivascular fibrosis (by histology). Importantly, (-)-CGP12177 treatment to aorta banded mice exacerbated cardiac expression of hypertrophic, fibrogenic and inflammatory genes (all p<0.05 vs. non-treated control with aorta banding).. Conclusion: β1LAR activation provides functional support to the heart, in both normal and diseased (pressure overload) settings. Sustained β1LAR activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure. Word count: 270

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol use disorders (AUDs) are complex and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and nonspecific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Aberrant dopaminergic signaling is a critical determinant in multiple psychiatric disorders, and in many disease states, dopamine receptor number is altered. Here we identify a molecular mechanism that selectively targets D2 receptors for degradation after their activation by dopamine. The degradative fate of D2 receptors is determined by an interaction with G protein coupled receptor-associated sorting protein (GASP). As a consequence of this GASP interaction, D2 responses in rat brain fail to resensitize after agonist treatment. Disruption of the D2-GASP interaction facilitates recovery of D2 responses, suggesting that modulation of the D2-GASP interaction is important for the functional down-regulation of D2 receptors.