939 resultados para salts in soils


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of two long unsupported circular parallel tunnels aligned horizontally in fully cohesive and cohesive-frictional soils has been determined. An upper bound limit analysis in combination with finite elements and linear programming is employed to perform the analysis. For different clear spacing (S) between the tunnels, the stability of tunnels is expressed in terms of a non-dimensional stability number (gamma H-max/c); where H is tunnel cover, c refers to soil cohesion, and gamma(max) is maximum unit weight of soil mass which the tunnels can bear without any collapse. The variation of the stability number with tunnels' spacing has been established for different combinations of H/D, m and phi; where D refers to diameter of each tunnel, phi is the internal friction angle of soil and m accounts for the rate at which the cohesion increases linearly with depth. The stability number reduces continuously with a decrease in the spacing between the tunnels. The optimum spacing (S-opt) between the two tunnels required to eliminate the interference effect increases with (i) an increase in H/D and (ii) a decrease in the values of both m and phi. The value of S-opt lies approximately in a range of 1.5D-3.5D with H/D = 1 and 7D-12D with H/D = 7. The results from the analysis compare reasonably well with the different solutions reported in literature. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex formation of alkyl ammonium salts by water-soluble carboxylatopillar5] arene (CP5A) in aqueous medium is reported. p-Xylene diammonium salt and a series of secondary alkyl ammonium salts with various alkyl groups have been prepared and investigated for complex formation. All the ammonium salts exhibit strong host-guest complexation with CP5A under neutral aqueous conditions. H-1 NMR, H-1 DOSY and 2D NOESY NMR experiments have been performed to characterize these inclusion complexes. In this study, the hydrophobic and electrostatic interactions govern the complex formation leading to the formation of pseudorotaxane species. Five pseudo2] rotaxanes and one pseudo3] rotaxane were obtained whose association constant values and stoichiometry were evaluated by an NMR titration method. The results indicate the use of ammonium salts as new complimentary synthons for CP5A in aqueous medium, adding to the repertoire of existing recognition motifs such as paraquat and 1,4-bis(pyridinium) derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the levels and distributions of nutrient salts in the United Arab Emirates waters. Water samples were collected bimonthly during 1994-1995 from the marine environment of the United Arab Emirates, which extends more than 800km along the Arabian Gulf and the Gulf of Oman. Concentrations of ammonium, nitrite, nitrate, phosphate, silicate, as well as total concentrations of total dissolved nitrogen, phosphorus, and silicon in the area were scattered in the ranges: (ND-6.32; mean: 0.84 µg-at N/l), ND-3.02; mean: 0.42 µg-at N/l), (ND-10.88; mean: 1.18 µg-at N/1), (ND-4.22; mean: 0.62 µg-at P/l), (1.14-28.80; mean: 6.52 µg-at Si/l), (1.52-39.58; mean: 12.28 µg-at N/l), (0.40-4.98; mean: 1.07 µg-at P/l), and (2.77-44.74; mean: 13.02 Si/l) respectively. Of inorganic nitrogen species, ammonium was the highest in the Arabian Gulf waters and nitrate was the highest at the Gulf of Oman. The dissolved inorganic nitrogen total species, phosphate and silicate amounted to 16.4, 47.6, 56.5% respectively, of the concentrations of nitrogen, phosphorus and silicon in the Arabian Gulf and 22.6, 64.4, 44.9% respectively, in the Gulf of Oman, indicating that more than 80% of nitrogen was present in organic forms. Distributions of nutrient in the two regions were higher in the summer season and lower in the winter season due to the oxidation of organic materials. Regional distributions revealed higher values for nitrite (1.3 times), nitrate (2.8 times), phosphate (2.2 times), total dissolved nitrogen (1.3 times), total dissolved phosphorus (1.6 times), and total dissolved silicon (1.3 times) in the Gulf of Oman compared to the Arabian Gulf, indicating more oligotrophic conditions at the Arabian Gulf Whereas no distinct patterns of distribution were observed in the Arabian Gulf waters, an increase in the seaward direction was measured at the Gulf of Oman. Vertical distributions indicated a general increase with depth in the two regions. The mean ratios for total concentrations of phosphorus, nitrogen, and silicon in the Arabian Gulf (1: 11.6: 12.6) and the Gulf of Oman (1: 10.1: 11.8) were lower than the Redfield ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcystin analysis in sediments and soils is considered very difficult due to low recovery for extraction. This is the primary limiting factor for understanding the fate of toxins in the interface between water and sediment in both the aquatic ecosystem as well as in soils. In the present study, a wide range of extraction solvents were evaluated over a wide range of pH, extraction approaches and equilibration time to optimize an effective extraction procedure for the analysis of microcystins in soils and lake sediments. The number of extractions required and acids in extraction solutions were also studied. In this procedure, EDTA-sodium pyrophosphate solution was selected as an extraction solvent based on the adsorption mechanism study. The optimized procedure proved to be highly efficient and achieved over 90% recovery. Finally, the developed procedure was applied to field soil and sediment sample collected from Chinese lakes during bloom seasons and microcystins were determined in six of ten samples. (c) 2005 Elsevier Ltd. All rights reserved.