974 resultados para rotational power loss
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Resumo:
The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
An algorithm inspired on ant behavior is developed in order to find out the topology of an electric energy distribution network with minimum power loss. The algorithm performance is investigated in hypothetical and actual circuits. When applied in an actual distribution system of a region of the State of Sao Paulo (Brazil), the solution found by the algorithm presents loss lower than the topology built by the concessionary company.
Resumo:
The reduction of the power loss generated in mechanical transmissions and the use of low friction biodegradable lubricants has been attracting considerable attention in recent times. Therefore, it is necessary to develop methods to test and evaluate the performance of such lubricants and compare them with conventional ones. In this sense, a Four-Ball Machine was modified allowing the test of rolling bearings. A 51107 thrust ball bearing was used to test two different greases and the corresponding base oils. Friction torque and operating temperatures were continuously monitored to quantify the power loss and the heat evacuation for each lubricant tested. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
Thrust ball bearings lubricated with several different greases were tested on a modified Four-Ball Machine, where the Four-Ball arrangement was replaced by a bearing assembly. The friction torque and operating temperatures in a thrust ball bearing were measured during the tests. At the end of each test a grease sample was analyzed through ferrographic techniques in order to quantify and evaluate bearing wear. A rolling bearing friction torque model was used and the coefficient of friction in full film lubrication was determined for each grease, depending on the operating conditions. The experimental results obtained showed that grease formulation had a very significant influence on friction torque and operating temperature. The friction torque depends on the viscosity of the grease base oil, on its nature (mineral, ester, PAO, etc.), on the coefficient of friction in full film conditions, but also on the interaction between grease thickener and base oil, which affected contact replenishment and contact starvation, and thus influenced the friction torque.
Resumo:
A design methodology for monolithic integration of inductor based DC-DC converters is proposed in this paper. A power loss model of the power stage, including the drive circuits, is defined in order to optimize efficiency. Based on this model and taking as reference a 0.35 mu m CMOS process, a buck converter was designed and fabricated. For a given set of operating conditions the defined power loss model allows to optimize the design parameters for the power stage, including the gate-driver tapering factor and the width of the power MOSFETs. Experimental results obtained from a buck converter at 100 MHz switching frequency are presented to validate the proposed methodology.
Resumo:
The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 degrees C, as in vivo. Using two orthogonal methods, a common SLP (20 Wg(-1)) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Erilaisten simulaatioiden tekeminen tutkimustyössä on tärkeää. Simulaatioiden avulla voidaan vähentää prototyyppitestauksen tarvetta. Diplomityössä on esitelty kehitettävää sähkökäyttösimulaattoria, jolla voidaan tarkastella erilaisten sähkökäyttöjen häviöiden muodostumista. Diplomityössä on keskitytty vertailemaan kehitettävän simulaattorin simulointituloksia todelliselta sähkökäytöltä mitattuihin suureisiin. Vertailun kohteena on taajuusmuuttajalla syötetty oikosulkumoottori, minkä virtojen ja jännitteiden vertailu on tehty aika- ja taajuustasossa.
Resumo:
Diplomityössä on kehitetty kaksitasoisen jännitevälipiirillisen taajuusmuuttajan häviöiden simulointiin käytettävä simulointimalli osaksi säädettävän sähkömoottorikäytön simulointityökalua, jolla voidaan analysoida eri säätöalgoritmien, kuormituksen ja kytkentätaajuuden vaikutusta taajuusmuuttajan häviöihin. Aluksi on selvitetty yksityiskohtaisesti taajuusmuuttajan häviölähteet ja häviöiden fysikaalinen tausta. Taajuusmuuttajassa käytettäville komponenteille on esitetty simulointimalleja. Taajuusmuuttajan malli ja häviöiden laskenta-algoritmit on toteutettu C-kielellä. Taajuusmuuttajan malli vastaa perusrakenteeltaan ACS800-02-0260-5 - taajuusmuuttajaa. ACS800-02-0260-5 -taajuusmuuttajan häviöitä on simuloitu erilaisissa kuormitustilanteissa, ja simulointien tueksi taajuusmuuttajan häviöt on pyritty selvittämään laboratoriomittauksin.
Resumo:
Tehoelektroniikkalaitteiden tehon kasvun myötä niiden hyötysuhteesta on tullut yksi niiden tärkeimmistä ominaisuuksista. Suurilla tehoilla prosentuaalisesti pienetkin tehohäviöt ovat merkittäviä ja aiheuttavat laitteen käyttäjälle ylimääräisiä energiakustannuksia ja tarvetta hukkalämmön poistolle. Näistä syistä asiakkaat vaativat hyvällä hyötysuhteella toimivia laitteita, joten laitevalmistajat pyrkivät tekemään niistä sellaisia. Simulaatiomallit ovat arvokkaita työkaluja laitesuunnittelussa. Hyötysuhdeoptimoinnin kannalta tehohäviöt tulisi pystyä mallintamaan, jotta komponenttivalintojen, ohjaustapojen ja pääpiiritopologioiden vaikutusta hyötysuhteeseen voitaisiin arvioida. Tässä työssä perehdytään eristehilabipolaaritransistorista (IGBT) tehtyihin simulaatiomalleihin ja arvioidaan niiden soveltuvuutta IGBT:ssä syntyvien tehohäviöiden mallintamiseen. Lisäksi verrataan mallia mittaukseen ja pohditaan, millaiset vaatimukset simulaatiomalliin todellisuudessa kohdistuvat.
Resumo:
This study is a survey of benefits and drawbacks of embedding a variable gearbox instead of a single reduction gear in electric vehicle powertrain from efficiency point of view. Losses due to a pair of spur gears meshing with involute teeth are modeled on the base of Coulomb’s law and fluid mechanics. The model for a variable gearbox is fulfilled and further employed in a complete vehicle simulation. Simulation model run for a single reduction gear then the results are taken as benchmark for other types of commonly used transmissions. Comparing power consumption, which is obtained from simulation model, shows that the extra load imposed by variable transmission components will shade the benefits of efficient operation of electric motor. The other accomplishment of this study is a combination of modified formulas that led to a new methodology for power loss prediction in gear meshing which is compatible with modern design and manufacturing technology.
Resumo:
As increasing efficiency of a wind turbine gearbox, more power can be transferred from rotor blades to generator and less power is used to cause wear and heating in the gearbox. By using a simulation model, behavior of the gearbox can be studied before creating expensive prototypes. The objective of the thesis is to model a wind turbine gearbox and its lubrication system to study power losses and heat transfer inside the gearbox and to study the simulation methods of the used software. Software used to create the simulation model is Siemens LMS Imagine.Lab AMESim, which can be used to create one-dimensional mechatronic system simulation models from different fields of engineering. When combining components from different libraries it is possible to create a simulation model, which includes mechanical, thermal and hydraulic models of the gearbox. Results for mechanical, thermal, and hydraulic simulations are presented in the thesis. Due to the large scale of the wind turbine gearbox and the amount of power transmitted, power loss calculations from AMESim software are inaccurate and power losses are modelled as constant efficiency for each gear mesh. Starting values for simulation in thermal and hydraulic simulations were chosen from test measurements and from empirical study as compact and complex design of gearbox prevents accurate test measurements. In further studies to increase the accuracy of the simulation model, components used for power loss calculations needs to be modified and values for unknown variables are needed to be solved through accurate test measurements.
Resumo:
The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Várias técnicas têm sido desenvolvidas para se obter o calor específico de sólidos e líquidos, incluindo a construção de experimentos de baixo custo para o ensino médio. Neste trabalho propomos uma maneira simples de se obter o calor específico de sólidos e líquidos. Por meio de curvas de calibração de resfriamento podemos estimar graficamente a perda de calor do sistema para sua vizinhança, e medir o calor específico do alumínio. Esta aproximação permite introduzir uma discussão sobre o processo dinâmico da troca de calor entre dos corpos.