923 resultados para rotation set
Resumo:
Moment invariants have been thoroughly studied and repeatedly proposed as one of the most powerful tools for 2D shape identification. In this paper a set of such descriptors is proposed, being the basis functions discontinuous in a finite number of points. The goal of using discontinuous functions is to avoid the Gibbs phenomenon, and therefore to yield a better approximation capability for discontinuous signals, as images. Moreover, the proposed set of moments allows the definition of rotation invariants, being this the other main design concern. Translation and scale invariance are achieved by means of standard image normalization. Tests are conducted to evaluate the behavior of these descriptors in noisy environments, where images are corrupted with Gaussian noise up to different SNR values. Results are compared to those obtained using Zernike moments, showing that the proposed descriptor has the same performance in image retrieval tasks in noisy environments, but demanding much less computational power for every stage in the query chain.
Resumo:
Spin-projected spin polarized Møller–Plesset and spin polarized coupled clusters calculations have been made to estimate the cyclobutadiene automerization, the ethylene torsion barriers in their ground state, and the gap between the singlet and triplet states of ethylene. The results have been obtained optimizing the geometries at MP4 and/or CCSD levels, by an extensive Gaussian basis set. A comparative analysis with more complex calculations, up to MP5 and CCSDTQP, together with others from the literature, have also been made, showing the efficacy of using spin-polarized wave functions as a reference wave function for Møller–Plesset and coupled clusters calculations, in such problems.
Resumo:
The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Study Design. Development of an automatic measurement algorithm and comparison with manual measurement methods. Objectives. To develop a new computer-based method for automatic measurement of vertebral rotation in idiopathic scoliosis from computed tomography images and to compare the automatic method with two manual measurement techniques. Summary of Background Data. Techniques have been developed for vertebral rotation measurement in idiopathic scoliosis using plain radiographs, computed tomography, or magnetic resonance images. All of these techniques require manual selection of landmark points and are therefore subject to interobserver and intraobserver error. Methods. We developed a new method for automatic measurement of vertebral rotation in idiopathic scoliosis using a symmetry ratio algorithm. The automatic method provided values comparable with Aaro and Ho's manual measurement methods for a set of 19 transverse computed tomography slices through apical vertebrae, and with Aaro's method for a set of 204 reformatted computed tomography images through vertebral endplates. Results. Confidence intervals (95%) for intraobserver and interobserver variability using manual methods were in the range 5.5 to 7.2. The mean (+/- SD) difference between automatic and manual rotation measurements for the 19 apical images was -0.5 degrees +/- 3.3 degrees for Aaro's method and 0.7 degrees +/- 3.4 degrees for Ho's method. The mean (+/- SD) difference between automatic and manual rotation measurements for the 204 endplate images was 0.25 degrees +/- 3.8 degrees. Conclusions. The symmetry ratio algorithm allows automatic measurement of vertebral rotation in idiopathic scoliosis without intraobserver or interobserver error due to landmark point selection.
Resumo:
PURPOSE: To assess the repeatability of an objective image analysis technique to determine intraocular lens (IOL) rotation and centration. SETTING: Six ophthalmology clinics across Europe. METHODS: One-hundred seven patients implanted with Akreos AO aspheric IOLs with orientation marks were imaged. Image quality was rated by a masked observer. The axis of rotation was determined from a line bisecting the IOL orientation marks. This was normalized for rotation of the eye between visits using the axis bisecting 2 consistent conjunctival vessels or iris features. The center of ovals overlaid to circumscribe the IOL optic edge and the pupil or limbus were compared to determine IOL centration. Intrasession repeatability was assessed in 40 eyes and the variability of repeated analysis examined. RESULTS: Intrasession rotational stability of the IOL was ±0.79 degrees (SD) and centration was ±0.10 mm horizontally and ±0.10 mm vertically. Repeated analysis variability of the same image was ±0.70 degrees for rotation and ±0.20 mm horizontally and ±0.31 mm vertically for centration. Eye rotation (absolute) between visits was 2.23 ± 1.84 degrees (10%>5 degrees rotation) using one set of consistent conjunctival vessels or iris features and 2.03 ± 1.66 degrees (7%>5 degrees rotation) using the average of 2 sets (P =.13). Poorer image quality resulted in larger apparent absolute IOL rotation (r =-0.45,P<.001). CONCLUSIONS: Objective analysis of digital retroillumination images allows sensitive assessment of IOL rotation and centration stability. Eye rotation between images can lead to significant errors if not taken into account. Image quality is important to analysis accuracy.
Resumo:
Acknowledgements This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI). We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).
Resumo:
Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.
Resumo:
This paper describes the development and preliminary experimental evaluation of a visionbased docking system to allow an Autonomous Underwater Vehicle (AUV) to identify and attach itself to a set of uniquely identifiable targets. These targets, docking poles, are detected using Haar rectangular features and rotation of integral images. A non-holonomic controller allows the Starbug AUV to orient itself with respect to the target whilst maintaining visual contact during the manoeuvre. Experimental results show the proposed vision system is capable of robustly identifying a pair of docking poles simultaneously in a variety of orientations and lighting conditions. Experiments in an outdoor pool show that this vision system enables the AUV to dock autonomously from a distance of up to 4m with relatively low visibility.
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
The Node-based Local Mesh Generation (NLMG) algorithm, which is free of mesh inconsistency, is one of core algorithms in the Node-based Local Finite Element Method (NLFEM) to achieve the seamless link between mesh generation and stiffness matrix calculation, and the seamless link helps to improve the parallel efficiency of FEM. Furthermore, the key to ensure the efficiency and reliability of NLMG is to determine the candidate satellite-node set of a central node quickly and accurately. This paper develops a Fast Local Search Method based on Uniform Bucket (FLSMUB) and a Fast Local Search Method based on Multilayer Bucket (FLSMMB), and applies them successfully to the decisive problems, i.e. presenting the candidate satellite-node set of any central node in NLMG algorithm. Using FLSMUB or FLSMMB, the NLMG algorithm becomes a practical tool to reduce the parallel computation cost of FEM. Parallel numerical experiments validate that either FLSMUB or FLSMMB is fast, reliable and efficient for their suitable problems and that they are especially effective for computing the large-scale parallel problems.