903 resultados para robotics manipulators
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
The behavior of mechanical manipulators with backlash is analyzed. In order to acquire and study the signals an experimental setup is implemented. The signal processing capabilities of the wavelets are used for de-noising the experimental signals and the energy of the obtained components is analyzed. To evaluate the backlash effect upon the robotic system, it is proposed an index based on the pseudo phase plane representation. Several tests are developed that demonstrate the coherence of the results.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
This paper analyzes the dynamic performance of two cooperative robot manipulators. It is studied the implementation of fractional-order algorithms in the position/force control of two cooperating robotic manipulators holding an object. The simulations reveal that fractional algorithms lead to performances superior to classical integer-order controllers.
Resumo:
This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. To test the impacts, a flexible beam is clamped to the end-effector of a manipulator that is programmed in a way such that the rod moves against a rigid surface. Eighteen signals are captured and theirs correlation are calculated. A sensor classification scheme based on the multidimensional scaling technique is presented.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.
Resumo:
This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. In order to acquire and study the signals an experimental setup is implemented. The signals are treated through signal processing tools such as the fast Fourier transform and the short time Fourier transform. The results show that the Fourier spectrum of several signals presents a non integer behavior. The experimental study provides valuable results that can assist in the design of a control system to deal with the unwanted effects of vibrations.
Resumo:
Redundant manipulators allow the trajectory optimization, the obstacle avoidance, and the resolution of singularities. For this type of manipulators, the kinematic control algorithms adopt generalized inverse matrices that may lead to unpredictable responses. Motivated by these problems this paper studies the complexity revealed by the trajectory planning scheme when controlling redundant manipulators. The results reveal fundamental properties of the chaotic phenomena and give a deeper insight towards the development of superior trajectory control algorithms.
Resumo:
The behavior of robotic manipulators with backlash is analyzed. Based on the pseudo-phase plane two indices are proposed to evaluate the backlash effect upon the robotic system: the root mean square error and the fractal dimension. For the dynamical analysis the noisy signals captured from the system are filtered through wavelets. Several tests are developed that demonstrate the coherence of the results.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. The results are compared with a genetic algorithm that adopts the direct kinematics. In both cases the trajectory planning is formulated as an optimization problem with constraints.
Resumo:
Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.
Resumo:
Teaching robotics to students at the beginning of their studies has become a huge challenge. Simulation environments can be an effective solution to that challenge where students can interact with simulated robots and have the first contact with robotic constraints. From our previous experience with simulation environments it was possible to observe that students with lower background knowledge in robotics where able to deal with a limited number of constraints, implement a simulated robotic platform and study several sensors. The question is: after this first phase what should be the best approach? Should the student start developing their own hardware? Hardware development is a very important part of an engineer's education but it can also be a difficult phase that could lead to discouragement and loss of motivation in some students. Considering the previous constraints and first year engineering students’ high abandonment rate it is important to develop teaching strategies to deal with this problem in a feasible way. The solution that we propose is the integration of a low-cost standard robotic platform WowWee Rovio as an intermediate solution between the simulation phase and the stage where the students can develop their own robots. This approach will allow the students to keep working in robotic areas such as: cooperative behaviour, perception, navigation and data fusion. The propose approach proved to be a motivation step not only for the students but also for the teachers. Students and teachers were able to reach an agreement between the level of demand imposed by the teachers and satisfaction/motivation of the students.
Resumo:
This work proposes a real-time algorithm to generate a trajectory for a 2 link planar robotic manipulator. The objective is to minimize the space/time ripple and the energy requirements or the time duration in the robot trajectories. The proposed method uses an off line genetic algorithm to calculate every possible trajectory between all cells of the workspace grid. The resultant trajectories are saved in several trees. Then any trajectory requested is constructed in real-time, from these trees. The article presents the results for several experiments.
Resumo:
Nonlinear Dynamics, chaos, Control, and Their Applications to Engineering Sciences: Vol. 6 - Applications of nonlinear phenomena
Resumo:
Redundant manipulators have some advantages when compared with classical arms because they allow the trajectory optimization, both on the free space and on the presence of abstacles, and the resolution of singularities. For this type of manipulators, several kinetic algorithms adopt generalized inverse matrices. In this line of thought, the generalized inverse control scheme is tested through several experiments that reveal the difficulties that often arise. Motivated by theseproblems this paper presents a new method that ptimizes the manipulability through a least squre polynomialapproximation to determine the joints positions. Moreover, the article studies influence on the dynamics, when controlling redundant and hyper-redundant manipulators. The experiment confirm the superior performance of the proposed algorithm for redundant and hyper-redundant manipulators, revealing several fundamental properties of the chaotic phenomena, and gives a deeper insight towards the future development of superior trajectory control algorithms.