960 resultados para road network
Resumo:
Optimal location on the transport infrastructure is the preferable requirement for many decision making processes. Most studies have focused on evaluating performances of optimally locate p facilities by minimizing their distances to a geographically distributed demand (n) when p and n vary. The optimal locations are also sensitive to geographical context such as road network, especially when they are asymmetrically distributed in the plane. The influence of alternating road network density is however not a very well-studied problem especially when it is applied in a real world context. This paper aims to investigate how the density level of the road network affects finding optimal location by solving the specific case of p-median location problem. A denser network is found needed when a higher number of facilities are to locate. The best solution will not always be obtained in the most detailed network but in a middle density level. The solutions do not further improve or improve insignificantly as the density exceeds 12,000 nodes, some solutions even deteriorate. The hierarchy of the different densities of network can be used according to location and transportation purposes and increase the efficiency of heuristic methods. The method in this study can be applied to other location-allocation problem in transportation analysis where the road network density can be differentiated.
Resumo:
This paper presents an automatic methodology for road network extraction from medium-and high-resolution aerial images. It is based on two steps. In the first step, the road seeds (i.e., road segments) are extracted using a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each road seed is composed by a sequence of connected road objects in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. In the second step, two strategies for road completion are applied in order to generate the complete road network. The first strategy is based on two basic perceptual grouping rules, i.e., proximity and collinearity rules, which allow the sequential reconstruction of gaps between every pair of disconnected road segments. This strategy does not allow the reconstruction of road crossings, but it allows the extraction of road centerlines from the contiguous quadrilaterals representing connected road segments. The second strategy for road completion aims at reconstructing road crossings. Firstly, the road centerlines are used to find reference points for road crossings, which are their approximate positions. Then these points are used to extract polygons representing the contours of road crossings. This paper presents the proposed methodology and experimental results. © Pleiades Publishing, Inc. 2006.
Resumo:
Includes bibliography
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
This document provides a review of international and national practices in investment decision support tools in road asset management. Efforts were concentrated on identifying analytic frameworks, evaluation methodologies and criteria adopted by current tools. Emphasis was also given to how current approaches support Triple Bottom Line decision-making. Benefit Cost Analysis and Multiple Criteria Analysis are principle methodologies in supporting decision-making in Road Asset Management. The complexity of the applications shows significant differences in international practices. There is continuing discussion amongst practitioners and researchers regarding to which one is more appropriate in supporting decision-making. It is suggested that the two approaches should be regarded as complementary instead of competitive means. Multiple Criteria Analysis may be particularly helpful in early stages of project development, say strategic planning. Benefit Cost Analysis is used most widely for project prioritisation and selecting the final project from amongst a set of alternatives. Benefit Cost Analysis approach is useful tool for investment decision-making from an economic perspective. An extension of the approach, which includes social and environmental externalities, is currently used in supporting Triple Bottom Line decision-making in the road sector. However, efforts should be given to several issues in the applications. First of all, there is a need to reach a degree of commonality on considering social and environmental externalities, which may be achieved by aggregating the best practices. At different decision-making level, the detail of consideration of the externalities should be different. It is intended to develop a generic framework to coordinate the range of existing practices. The standard framework will also be helpful in reducing double counting, which appears in some current practices. Cautions should also be given to the methods of determining the value of social and environmental externalities. A number of methods, such as market price, resource costs and Willingness to Pay, are found in the review. The use of unreasonable monetisation methods in some cases has discredited Benefit Cost Analysis in the eyes of decision makers and the public. Some social externalities, such as employment and regional economic impacts, are generally omitted in current practices. This is due to the lack of information and credible models. It may be appropriate to consider these externalities in qualitative forms in a Multiple Criteria Analysis. Consensus has been reached in considering noise and air pollution in international practices. However, Australia practices generally omitted these externalities. Equity is an important consideration in Road Asset Management. The considerations are either between regions, or social groups, such as income, age, gender, disable, etc. In current practice, there is not a well developed quantitative measure for equity issues. More research is needed to target this issue. Although Multiple Criteria Analysis has been used for decades, there is not a generally accepted framework in the choice of modelling methods and various externalities. The result is that different analysts are unlikely to reach consistent conclusions about a policy measure. In current practices, some favour using methods which are able to prioritise alternatives, such as Goal Programming, Goal Achievement Matrix, Analytic Hierarchy Process. The others just present various impacts to decision-makers to characterise the projects. Weighting and scoring system are critical in most Multiple Criteria Analysis. However, the processes of assessing weights and scores were criticised as highly arbitrary and subjective. It is essential that the process should be as transparent as possible. Obtaining weights and scores by consulting local communities is a common practice, but is likely to result in bias towards local interests. Interactive approach has the advantage in helping decision-makers elaborating their preferences. However, computation burden may result in lose of interests of decision-makers during the solution process of a large-scale problem, say a large state road network. Current practices tend to use cardinal or ordinal scales in measure in non-monetised externalities. Distorted valuations can occur where variables measured in physical units, are converted to scales. For example, decibels of noise converts to a scale of -4 to +4 with a linear transformation, the difference between 3 and 4 represents a far greater increase in discomfort to people than the increase from 0 to 1. It is suggested to assign different weights to individual score. Due to overlapped goals, the problem of double counting also appears in some of Multiple Criteria Analysis. The situation can be improved by carefully selecting and defining investment goals and criteria. Other issues, such as the treatment of time effect, incorporating risk and uncertainty, have been given scant attention in current practices. This report suggested establishing a common analytic framework to deal with these issues.
Resumo:
Precise, up-to-date and increasingly detailed road maps are crucial for various advanced road applications, such as lane-level vehicle navigation, and advanced driver assistant systems. With the very high resolution (VHR) imagery from digital airborne sources, it will greatly facilitate the data acquisition, data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lane information from aerial images with employment of the object-oriented image analysis method. Our proposed algorithm starts with constructing the DSM and true orthophotos from the stereo images. The road lane details are detected using an object-oriented rule based image classification approach. Due to the affection of other objects with similar spectral and geometrical attributes, the extracted road lanes are filtered with the road surface obtained by a progressive two-class decision classifier. The generated road network is evaluated using the datasets provided by Queensland department of Main Roads. The evaluation shows completeness values that range between 76% and 98% and correctness values that range between 82% and 97%.
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
Resumo:
In December 2006, the Engineering and Technology Group of Queensland’s Department of Main Roads entered into a three-year skid resistance management research project with QUT Faculty of Built Environment and Engineering researchers and the QUT-based CRC for Integrated Engineering Asset Management (CIEAM). CIEAM undertakes a broad range of asset management research in the areas of defence, utilities, transportation and industrial processes. “The research project is an important activity of Main Roads’ Skid Resistance Management Plan published in June 2006.” said Main Roads project leader Mr Justin Weligamage. “The intended project output is a decision-support model for use by Road Asset Managers throughout a road network. The research objective is to enable road asset managers to better manage the surfacing condition of the road asset with specific focus on skid resistance,” said QUT project leader Professor Arun Kumar. The research project will review existing skid resistance investigatory levels, develop a risk-based method to establish skid resistance investigatory levels and improve the decision support methodology in order to minimise crashes. The new risk-based approach will be used to identify locations on the Queensland state-controlled road network that may have inadequate skid resistance. Once a high risk site is identified, the appropriate remedial action will be decided on. This approach will allow road asset managers to target optimal remedial actions, reducing the incidence and severity of crashes where inadequate skid resistance is a contributing cause.
Resumo:
Road accidents are of great concerns for road and transport departments around world, which cause tremendous loss and dangers for public. Reducing accident rates and crash severity are imperative goals that governments, road and transport authorities, and researchers are aimed to achieve. In Australia, road crash trauma costs the nation A$ 15 billion annually. Five people are killed, and 550 are injured every day. Each fatality costs the taxpayer A$1.7 million. Serious injury cases can cost the taxpayer many times the cost of a fatality. Crashes are in general uncontrolled events and are dependent on a number of interrelated factors such as driver behaviour, traffic conditions, travel speed, road geometry and condition, and vehicle characteristics (e.g. tyre type pressure and condition, and suspension type and condition). Skid resistance is considered one of the most important surface characteristics as it has a direct impact on traffic safety. Attempts have been made worldwide to study the relationship between skid resistance and road crashes. Most of these studies used the statistical regression and correlation methods in analysing the relationships between skid resistance and road crashes. The outcomes from these studies provided mix results and not conclusive. The objective of this paper is to present a probability-based method of an ongoing study in identifying the relationship between skid resistance and road crashes. Historical skid resistance and crash data of a road network located in the tropical east coast of Queensland were analysed using the probability-based method. Analysis methodology and results of the relationships between skid resistance, road characteristics and crashes are presented.
Resumo:
Road safety is a major concern worldwide. Road safety will improve as road conditions and their effects on crashes are continually investigated. This paper proposes to use the capability of data mining to include the greater set of road variables for all available crashes with skid resistance values across the Queensland state main road network in order to understand the relationships among crash, traffic and road variables. This paper presents a data mining based methodology for the road asset management data to find out the various road properties that contribute unduly to crashes. The models demonstrate high levels of accuracy in predicting crashes in roads when various road properties are included. This paper presents the findings of these models to show the relationships among skid resistance, crashes, crash characteristics and other road characteristics such as seal type, seal age, road type, texture depth, lane count, pavement width, rutting, speed limit, traffic rates intersections, traffic signage and road design and so on.
Resumo:
Many ageing road bridges, particularly timber bridges, require urgent improvement due to the demand imposed by the recent version of the Australian bridge loading code, AS 5100. As traffic volume plays a key role in the decision of budget allocations for bridge refurbishment/ replacement, many bridges in low volume traffic network remain in poor condition with axle load and/ or speed restrictions, thus disadvantaging many rural communities. This thesis examines an economical and environmentally sensible option of incorporating disused flat rail wagons (FRW) in the construction of bridges in low volume, high axle load road network. The constructability, economy and structural adequacy of the FRW road bridge is reported in the thesis with particular focus of a demonstration bridge commissioned in regional Queensland. The demonstration bridge comprises of a reinforced concrete slab (RCS) pavement resting on two FRWs with custom designed connection brackets at regular intervals along the span of the bridge. The FRW-RC bridge deck assembly is supported on elastomeric rubber pads resting on the abutment. As this type of bridge replacement technology is new and its structural design is not covered in the design standards, the in-service structural performance of the FRW bridge subjected to the high axle loadings prescribed in AS 5100 is examined through performance load testing. Both the static and the moving load tests are carried out using a fully laden commonly available three-axle tandem truck. The bridge deck is extensively strain gauged and displacement at several key locations is measured using linear variable displacement transducers (LVDTs). A high speed camera is used in the performance test and the digital image data are analysed using proprietary software to capture the locations of the wheel positions on the bridge span accurately. The wheel location is thus synchronised with the displacement and strain time series to infer the structural response of the FRW bridge. Field test data are used to calibrate a grillage model, developed for further analysis of the FRW bridge to various sets of high axle loads stipulated in the bridge design standard. Bridge behaviour predicted by the grillage model has exemplified that the live load stresses of the FRW bridge is significantly lower than the yield strength of steel and the deflections are well below the serviceability limit state set out in AS 5100. Based on the results reported in this thesis, it is concluded that the disused FRWs are competent to resist high axle loading prescribed in AS 5100 and are a viable alternative structural solution of bridge deck in the context of the low volume road networks.
Resumo:
Critical road infrastructure (such as tunnels and overpasses) is of major significance to society and constitutes major components of interdependent, ‘systems and networks’. Failure in critical components of these wide area infrastructure systems can often result in cascading disturbances with secondary and tertiary impacts - some of which may become initiating sources of failure in their own right, triggering further systems failures across wider networks. Perrow1) considered the impact of our increasing use of technology in high-risk fields, analysing the implications on everyday life and argued that designers of these types of infrastructure systems cannot predict every possible failure scenario nor create perfect contingency plans for operators. Challenges exist for transport system operators in the conceptualisation and implementation of response and subsequent recovery planning for significant events. Disturbances can vary from reduced traffic flow causing traffic congestion throughout the local road network(s) and subsequent possible loss of income to businesses and industry to a major incident causing loss of life or complete loss of an asset. Many organisations and institutions, despite increasing recognition of the effects of crisis events, are not adequately prepared to manage crises2). It is argued that operators of land transport infrastructure are in a similar category of readiness given the recent instances of failures in road tunnels. These unexpected infrastructure failures, and their ultimately identified causes, suggest there is significant room for improvement. As a result, risk profiles for road transport systems are often complex due to the human behaviours and the inter-mix of technical and organisational components and the managerial coverage needed for the socio-technical components and the physical infrastructure. In this sense, the span of managerial oversight may require new approaches to asset management that combines the notion of risk and continuity management. This paper examines challenges in the planning of response and recovery practices of owner/operators of transport systems (above and below ground) in Australia covering: • Ageing or established infrastructure; and • New-build infrastructure. With reference to relevant international contexts this paper seeks to suggest options for enhancing the planning and practice for crisis response in these transport networks and as a result support the resilience of Critical Infrastructure.
Resumo:
This thesis takes a new data mining approach for analyzing road/crash data by developing models for the whole road network and generating a crash risk profile. Roads with an elevated crash risk due to road surface friction deficit are identified. The regression tree model, predicting road segment crash rate, is applied in a novel deployment coined regression tree extrapolation that produces a skid resistance/crash rate curve. Using extrapolation allows the method to be applied across the network and cope with the high proportion of missing road surface friction values. This risk profiling method can be applied in other domains.
Resumo:
Ethiopia has one of Africa’s fastest growing non-oil producing economies and an increasing level of motorisation (AfDB, OECD, UNDP, & UNECA, 2012). This rapidly increasing mobility has created some unique road safety concerns; however there is scant published information and related commentary (United Nations Economic Commission for Africa, 2009). The objective of this paper is to quantify police-reported traffic crashes in Ethiopia and characterise the existing state of road safety. Six years (July 2005 - June 2011) of police-reported crash data were analysed, consisting of 12,140 fatal and 29,454 injury crashes on the country’s road network. The 12,140 fatal crashes involved 1,070 drivers, 5,702 passengers, and 7,770 pedestrians, totalling 14,542 fatalities, an average of 1.2 road user fatalities per crash. An important and glaring trend that emerges is that more than half of the fatalities in Ethiopia involve pedestrians. The majority of the crashes occur during daytime hours, involve males, and involve persons in the 18-50 age group—Ethiopia’s active workforce. Crashes frequently occur in mid blocks or roadways. The predominant collision between motor vehicles and pedestrians was a rollover on a road tangent section. Failing to observe the priority of pedestrians and speeding were the major causes of crashes attributed by police. Trucks and minibus taxis were involved in the majority of crashes, while automobiles (small vehicles) were less involved in crashes relative to other vehicle types, partially because small vehicles tend to be driven fewer kilometres per annum. These data illustrate and justify a high priority to identify and implement effective programs, policies, and countermeasures focused on reducing pedestrian crashes.