961 resultados para rna sequence
Resumo:
Ligase-mediated gene detection has proven valuable for detection and precise distinction of DNA sequence variants. We have recently shown that T4 DNA ligase can also be used to distinguish single nucleotide variants of RNA sequences. Here we describe parameters that influence RNA-templated DNA ligation by T4 DNA ligase. The reaction proceeds much more slowly, requiring more enzyme, compared to ligation of the same oligonucleotides hybridized to the corresponding DNA sequence. The reaction is inhibited at high concentrations of ATP and NaCl and both magnesium and manganese ions can support the reaction. We define reaction conditions where 80% of RNA target molecules can template a diagnostic ligation reaction. Ligase-mediated RNA detection should provide a useful mechanism for sensitive and accurate detection and distinction of RNA sequence variants.
Resumo:
RNA-protein interactions are pivotal in fundamental cellular processes such as translation, mRNA processing, early development, and infection by RNA viruses. However, in spite of the central importance of these interactions, few approaches are available to analyze them rapidly in vivo. We describe a yeast genetic method to detect and analyze RNA-protein interactions in which the binding of a bifunctional RNA to each of two hybrid proteins activates transcription of a reporter gene in vivo. We demonstrate that this three-hybrid system enables the rapid, phenotypic detection of specific RNA-protein interactions. As examples, we use the binding of the iron regulatory protein 1 (IRP1) to the iron response element (IRE), and of HIV trans-activator protein (Tat) to the HIV trans-activation response element (TAR) RNA sequence. The three-hybrid assay we describe relies only on the physical properties of the RNA and protein, and not on their natural biological activities; as a result, it may have broad application in the identification of RNA-binding proteins and RNAs, as well as in the detailed analysis of their interactions.
Resumo:
RNA editing in the nucleus of higher eukaryotes results in subtle changes to the RNA sequence, with the ability to effect dramatic changes in biological function. The first example to be described and among the best characterized, is the cytidine-to-uridine editing of apolipoprotein B (apo-B) RNA. The editing of apo-B RNA is mediated by a novel cytidine deaminase, apobec-1, which has acquired the ability to bind RNA. The stop translation codon generated by the editing of apo-B RNA truncates the full-length apo-B100 to form apo-B48. The recent observations of tumor formation in Apobec-1 transgenic animals, together with the fact that Apobec-1 is expressed in numerous tissues lacking apo-B, raises the issue of whether this enzyme is essential for a variety of posttranscriptional editing events. To directly test this, mice were created with a null mutation in Apobec-1 using homologous recombination in embryonic stem cells. Mice, homozygous for this mutation, were viable and made apo-B100 but not apo-B48. The null animals were fertile, and a variety of histological, behavioral, and morphological analyses revealed no phenotype other than abnormalities in lipoprotein metabolism, which included an increased low density lipoprotein fraction and a reduction in high density lipoprotein cholesterol. These studies demonstrate that neither apobec-1 nor apo-B48 is essential for viability and suggest that the major role of apobec-1 may be confined to the modulation of lipid transport.
Resumo:
The evolutionarily conserved Krüppel-associated box (KRAB) is present in the N-terminal regions of more than one-third of all Krüppel-class zinc finger proteins. Recent experiments have demonstrated that the KRAB-A domain tethered to a promoter DNA by connecting to heterologous DNA-binding protein domain or targeted to a promoter-proximal RNA sequence acts as a transcriptional silencing of RNA polymerase II promoters. Here we show that expression of KRAB domain suppresses in vivo the activating function of various defined activating transcription factors, and we demonstrate that the KRAB domain specifically silences the activity of promoters whose initiation is dependent on the presence of a TATA box. Promoters whose accurate transcription initiation is directed by a pyrimidine-rich initiator element, however, are relatively unaffected. We also report in vitro transcription experiments indicating that the KRAB domain is able to repress both activated and basal promoter activity. Thus, the KRAB domain appears to repress the activity of certain promoters through direct communication with TATA box-dependent basal transcription machinery.
Resumo:
We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A'-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA namely major groove width, inclination and the number of base pairs in a helical twist over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A'-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors). © CSIRO 2009.
Resumo:
Background. The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework. Results. We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population). Conclusions. The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate µ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of µ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks. © 2010 Stich et al; licensee BioMed Central Ltd.
Resumo:
Ichthyosporea is a recently recognized group of morphologically simple eukaryotes, many of which cause disease in aquatic organisms. Ribosomal RNA sequence analyses place Ichthyosporea near the divergence of the animal and fungal lineages, but do not allow resolution of its exact phylogenetic position. Some of the best evidence for a specific grouping of animals and fungi (Opisthokonta) has come from elongation factor 1alpha, not only phylogenetic analysis of sequences but also the presence or absence of short insertions and deletions. We sequenced the EF-1alpha gene from the ichthyosporean parasite Ichthyophonus irregularis and determined its phylogenetic position using neighbor-joining, parsimony and Bayesian methods. We also sequenced EF-1alpha genes from four chytrids to provide broader representation within fungi. Sequence analyses and the presence of a characteristic 12 amino acid insertion strongly indicate that I. irregularis is a member of Opisthokonta, but do not resolve whether I. irregularis is a specific relative of animals or of fungi. However, the EF-1alpha of I. irregularis exhibits a two amino acid deletion heretofore reported only among fungi. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Here, we report the molecular analysis of two independent 5S rRNA clusters found in the intergenic region of two ubiquitin genomic clones isolated from Tetrahymena pyriformis. Each cluster contains two 120-bp-long coding regions organized in tandem with 142/145-bp-long spacers.
Resumo:
Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a) the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT) medium at 28oC is 58±13 hr; (b) differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c) trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d) blood forms are highly infective to mice; (e) blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a) isoenzymatic profiles are characteristic of zymodeme ZB; (b) PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c) schizodeme, randomly amplified polymorphic DNA (RAPD) and DNA fingerprinting analyses were performed
Resumo:
The “one-gene, one-protein” rule, coined by Beadle and Tatum, has been fundamental to molecular biology. The rule implies that the genetic complexity of an organism depends essentially on its gene number. The discovery, however, that alternative gene splicing and transcription are widespread phenomena dramatically altered our understanding of the genetic complexity of higher eukaryotic organisms; in these, a limited number of genes may potentially encode a much larger number of proteins. Here we investigate yet another phenomenon that may contribute to generate additional protein diversity. Indeed, by relying on both computational and experimental analysis, we estimate that at least 4%–5% of the tandem gene pairs in the human genome can be eventually transcribed into a single RNA sequence encoding a putative chimeric protein. While the functional significance of most of these chimeric transcripts remains to be determined, we provide strong evidence that this phenomenon does not correspond to mere technical artifacts and that it is a common mechanism with the potential of generating hundreds of additional proteins in the human genome.
Resumo:
Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells isone of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenoncontributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora ofdifferent transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify thedifferent types of reflected splicing variation. In this work, we present a general definition of the AS event along with anotation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assignsa specific ‘‘AS code’’ to every possible pattern of splicing variation. On the basis of this definition and the correspondingcodes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of ASevents in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversityacross genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—ofthe observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate andto compare the AS landscape of different reference annotation sets in human and in other metazoan species and found thatproportions of AS events change substantially depending on the annotation protocol, species-specific attributes, andcoding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conductspecific studies investigating the occurrence, impact, and regulation of AS.
Resumo:
Background: We present the results of EGASP, a community experiment to assess the state-ofthe-art in genome annotation within the ENCODE regions, which span 1% of the human genomesequence. The experiment had two major goals: the assessment of the accuracy of computationalmethods to predict protein coding genes; and the overall assessment of the completeness of thecurrent human genome annotations as represented in the ENCODE regions. For thecomputational prediction assessment, eighteen groups contributed gene predictions. Weevaluated these submissions against each other based on a ‘reference set’ of annotationsgenerated as part of the GENCODE project. These annotations were not available to theprediction groups prior to the submission deadline, so that their predictions were blind and anexternal advisory committee could perform a fair assessment.Results: The best methods had at least one gene transcript correctly predicted for close to 70%of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into accountalternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotidelevel, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programsrelying on mRNA and protein sequences were the most accurate in reproducing the manuallycurated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could beverified.Conclusions: This is the first such experiment in human DNA, and we have followed thestandards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe theresults presented here contribute to the value of ongoing large-scale annotation projects and shouldguide further experimental methods when being scaled up to the entire human genome sequence.
Resumo:
Selenoproteins are a diverse group of proteinsusually misidentified and misannotated in sequencedatabases. The presence of an in-frame UGA (stop)codon in the coding sequence of selenoproteingenes precludes their identification and correctannotation. The in-frame UGA codons are recodedto cotranslationally incorporate selenocysteine,a rare selenium-containing amino acid. The developmentof ad hoc experimental and, more recently,computational approaches have allowed the efficientidentification and characterization of theselenoproteomes of a growing number of species.Today, dozens of selenoprotein families have beendescribed and more are being discovered in recentlysequenced species, but the correct genomic annotationis not available for the majority of thesegenes. SelenoDB is a long-term project that aims toprovide, through the collaborative effort of experimentaland computational researchers, automaticand manually curated annotations of selenoproteingenes, proteins and SECIS elements. Version 1.0 ofthe database includes an initial set of eukaryoticgenomic annotations, with special emphasis on thehuman selenoproteome, for immediate inspectionby selenium researchers or incorporation into moregeneral databases. SelenoDB is freely available athttp://www.selenodb.org.
Resumo:
The "one-gene, one-protein" rule, coined by Beadle and Tatum, has been fundamental to molecular biology. The rule implies that the genetic complexity of an organism depends essentially on its gene number. The discovery, however, that alternative gene splicing and transcription are widespread phenomena dramatically altered our understanding of the genetic complexity of higher eukaryotic organisms; in these, a limited number of genes may potentially encode a much larger number of proteins. Here we investigate yet another phenomenon that may contribute to generate additional protein diversity. Indeed, by relying on both computational and experimental analysis, we estimate that at least 4%-5% of the tandem gene pairs in the human genome can be eventually transcribed into a single RNA sequence encoding a putative chimeric protein. While the functional significance of most of these chimeric transcripts remains to be determined, we provide strong evidence that this phenomenon does not correspond to mere technical artifacts and that it is a common mechanism with the potential of generating hundreds of additional proteins in the human genome.