972 resultados para risk modelling
Resumo:
Research has demonstrated that landscape or watershed scale processes can influence instream aquatic ecosystems, in terms of the impacts of delivery of fine sediment, solutes and organic matter. Testing such impacts upon populations of organisms (i.e. at the catchment scale) has not proven straightforward and differences have emerged in the conclusions reached. This is: (1) partly because different studies have focused upon different scales of enquiry; but also (2) because the emphasis upon upstream land cover has rarely addressed the extent to which such land covers are hydrologically connected, and hence able to deliver diffuse pollution, to the drainage network However, there is a third issue. In order to develop suitable hydrological models, we need to conceptualise the process cascade. To do this, we need to know what matters to the organism being impacted by the hydrological system, such that we can identify which processes need to be modelled. Acquiring such knowledge is not easy, especially for organisms like fish that might occupy very different locations in the river over relatively short periods of time. However, and inevitably, hydrological modellers have started by building up piecemeal the aspects of the problem that we think matter to fish. Herein, we report two developments: (a) for the case of sediment associated diffuse pollution from agriculture, a risk-based modelling framework, SCIMAP, has been developed, which is distinct because it has an explicit focus upon hydrological connectivity; and (b) we use spatially distributed ecological data to infer the processes and the associated process parameters that matter to salmonid fry. We apply the model to spatially distributed salmon and fry data from the River Eden, Cumbria, England. The analysis shows, quite surprisingly, that arable land covers are relatively unimportant as drivers of fry abundance. What matters most is intensive pasture, a land cover that could be associated with a number of stressors on salmonid fry (e.g. pesticides, fine sediment) and which allows us to identify a series of risky field locations, where this land cover is readily connected to the river system by overland flow. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
High N concentrations in biosolids are one of the strongest reasons for their agricultural use. However, it is essential to understand the fate of N in soils treated with biosolids for both plant nutrition and managing the environmental risk of NO3--N leaching. This work aimed at evaluating the risk of NO3--N leaching from a Spodosol and an Oxisol, each one treated with 0.5-8.0 dry Mg ha-1 of fresh tertiary sewage sludge, composted biosolids, limed biosolids, heat-dried biosolids and solar-irradiated biosolids. Results indicated that under similar application rates NO3--N accumulated up to three times more in the 20 cm topsoil of the Oxisol than the Spodosol. However, a higher water content held at field capacity in the Oxisol compensated for the greater nitrate concentrations. A 20 % NO3--N loss from the root zone in the amended Oxisol could be expected. Depending on the biosolids type, 42 to 76 % of the NO3--N accumulated in the Spodosol could be expected to leach down from the amended 20 cm topsoil. NO3--N expected to leach from the Spodosol ranged from 0.8 (composted sludge) to 3.5 times (limed sludge) the amounts leaching from the Oxisol treated alike. Nevertheless, the risk of NO3--N groundwater contamination as a result of a single biosolids land application at 0.5-8.0 dry Mg ha-1 could be considered low.
Resumo:
OBJECTIVE: To quantify the relation between body mass index (BMI) and endometrial cancer risk, and to describe the shape of such a relation. DESIGN: Pooled analysis of three hospital-based case-control studies. SETTING: Italy and Switzerland. POPULATION: A total of 1449 women with endometrial cancer and 3811 controls. METHODS: Multivariate odds ratios (OR) and 95% confidence intervals (95% CI) were obtained from logistic regression models. The shape of the relation was determined using a class of flexible regression models. MAIN OUTCOME MEASURE: The relation of BMI with endometrial cancer. RESULTS: Compared with women with BMI 18.5 to <25 kg/m(2) , the odds ratio was 5.73 (95% CI 4.28-7.68) for women with a BMI ≥35 kg/m(2) . The odds ratios were 1.10 (95% CI 1.09-1.12) and 1.63 (95% CI 1.52-1.75) respectively for an increment of BMI of 1 and 5 units. The relation was stronger in never-users of oral contraceptives (OR 3.35, 95% CI 2.78-4.03, for BMI ≥30 versus <25 kg/m(2) ) than in users (OR 1.22, 95% CI 0.56-2.67), and in women with diabetes (OR 8.10, 95% CI 4.10-16.01, for BMI ≥30 versus <25 kg/m(2) ) than in those without diabetes (OR 2.95, 95% CI 2.44-3.56). The relation was best fitted by a cubic model, although after the exclusion of the 5% upper and lower tails, it was best fitted by a linear model. CONCLUSIONS: The results of this study confirm a role of elevated BMI in the aetiology of endometrial cancer and suggest that the risk in obese women increases in a cubic nonlinear fashion. The relation was stronger in never-users of oral contraceptives and in women with diabetes. TWEETABLE ABSTRACT: Risk of endometrial cancer increases with elevated body weight in a cubic nonlinear fashion.
Resumo:
A wide variety of exposure models are currently employed for health risk assessments. Individual models have been developed to meet the chemical exposure assessment needs of Government, industry and academia. These existing exposure models can be broadly categorised according to the following types of exposure source: environmental, dietary, consumer product, occupational, and aggregate and cumulative. Aggregate exposure models consider multiple exposure pathways, while cumulative models consider multiple chemicals. In this paper each of these basic types of exposure model are briefly described, along with any inherent strengths or weaknesses, with the UK as a case study. Examples are given of specific exposure models that are currently used, or that have the potential for future use, and key differences in modelling approaches adopted are discussed. The use of exposure models is currently fragmentary in nature. Specific organisations with exposure assessment responsibilities tend to use a limited range of models. The modelling techniques adopted in current exposure models have evolved along distinct lines for the various types of source. In fact different organisations may be using different models for very similar exposure assessment situations. This lack of consistency between exposure modelling practices can make understanding the exposure assessment process more complex, can lead to inconsistency between organisations in how critical modelling issues are addressed (e.g. variability and uncertainty), and has the potential to communicate mixed messages to the general public. Further work should be conducted to integrate the various approaches and models, where possible and regulatory remits allow, to get a coherent and consistent exposure modelling process. We recommend the development of an overall framework for exposure and risk assessment with common approaches and methodology, a screening tool for exposure assessment, collection of better input data, probabilistic modelling, validation of model input and output and a closer working relationship between scientists and policy makers and staff from different Government departments. A much increased effort is required is required in the UK to address these issues. The result will be a more robust, transparent, valid and more comparable exposure and risk assessment process. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).
Resumo:
This study suggests a statistical strategy for explaining how food purchasing intentions are influenced by different levels of risk perception and trust in food safety information. The modelling process is based on Ajzen's Theory of Planned Behaviour and includes trust and risk perception as additional explanatory factors. Interaction and endogeneity across these determinants is explored through a system of simultaneous equations, while the SPARTA equation is estimated through an ordered probit model. Furthermore, parameters are allowed to vary as a function of socio-demographic variables. The application explores chicken purchasing intentions both in a standard situation and conditional to an hypothetical salmonella scare. Data were collected through a nationally representative UK wide survey of 533 UK respondents in face-to-face, in-home interviews. Empirical findings show that interactions exist among the determinants of planned behaviour and socio-demographic variables improve the model's performance. Attitudes emerge as the key determinant of intention to purchase chicken, while trust in food safety information provided by media reduces the likelihood to purchase. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We developed a stochastic simulation model incorporating most processes likely to be important in the spread of Phytophthora ramorum and similar diseases across the British landscape (covering Rhododendron ponticum in woodland and nurseries, and Vaccinium myrtillus in heathland). The simulation allows for movements of diseased plants within a realistically modelled trade network and long-distance natural dispersal. A series of simulation experiments were run with the model, representing an experiment varying the epidemic pressure and linkage between natural vegetation and horticultural trade, with or without disease spread in commercial trade, and with or without inspections-with-eradication, to give a 2 x 2 x 2 x 2 factorial started at 10 arbitrary locations spread across England. Fifty replicate simulations were made at each set of parameter values. Individual epidemics varied dramatically in size due to stochastic effects throughout the model. Across a range of epidemic pressures, the size of the epidemic was 5-13 times larger when commercial movement of plants was included. A key unknown factor in the system is the area of susceptible habitat outside the nursery system. Inspections, with a probability of detection and efficiency of infected-plant removal of 80% and made at 90-day intervals, reduced the size of epidemics by about 60% across the three sectors with a density of 1% susceptible plants in broadleaf woodland and heathland. Reducing this density to 0.1% largely isolated the trade network, so that inspections reduced the final epidemic size by over 90%, and most epidemics ended without escape into nature. Even in this case, however, major wild epidemics developed in a few percent of cases. Provided the number of new introductions remains low, the current inspection policy will control most epidemics. However, as the rate of introduction increases, it can overwhelm any reasonable inspection regime, largely due to spread prior to detection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective To model the overall and income specific effect of a 20% tax on sugar sweetened drinks on the prevalence of overweight and obesity in the UK. Design Econometric and comparative risk assessment modelling study. Setting United Kingdom. Population Adults aged 16 and over. Intervention A 20% tax on sugar sweetened drinks. Main outcome measures The primary outcomes were the overall and income specific changes in the number and percentage of overweight (body mass index ≥25) and obese (≥30) adults in the UK following the implementation of the tax. Secondary outcomes were the effect by age group (16-29, 30-49, and ≥50 years) and by UK constituent country. The revenue generated from the tax and the income specific changes in weekly expenditure on drinks were also estimated. Results A 20% tax on sugar sweetened drinks was estimated to reduce the number of obese adults in the UK by 1.3% (95% credible interval 0.8% to 1.7%) or 180 000 (110 000 to 247 000) people and the number who are overweight by 0.9% (0.6% to 1.1%) or 285 000 (201 000 to 364 000) people. The predicted reductions in prevalence of obesity for income thirds 1 (lowest income), 2, and 3 (highest income) were 1.3% (0.3% to 2.0%), 0.9% (0.1% to 1.6%), and 2.1% (1.3% to 2.9%). The effect on obesity declined with age. Predicted annual revenue was £276m (£272m to £279m), with estimated increases in total expenditure on drinks for income thirds 1, 2, and 3 of 2.1% (1.4% to 3.0%), 1.7% (1.2% to 2.2%), and 0.8% (0.4% to 1.2%). Conclusions A 20% tax on sugar sweetened drinks would lead to a reduction in the prevalence of obesity in the UK of 1.3% (around 180 000 people). The greatest effects may occur in young people, with no significant differences between income groups. Both effects warrant further exploration. Taxation of sugar sweetened drinks is a promising population measure to target population obesity, particularly among younger adults.
Resumo:
Objectives To model the impact on chronic disease of a tax on UK food and drink that internalises the wider costs to society of greenhouse gas (GHG) emissions and to estimate the potential revenue. Design An econometric and comparative risk assessment modelling study. Setting The UK. Participants The UK adult population. Interventions Two tax scenarios are modelled: (A) a tax of £2.72/tonne carbon dioxide equivalents (tCO2e)/100 g product applied to all food and drink groups with above average GHG emissions. (B) As with scenario (A) but food groups with emissions below average are subsidised to create a tax neutral scenario. Outcome measures Primary outcomes are change in UK population mortality from chronic diseases following the implementation of each taxation strategy, the change in the UK GHG emissions and the predicted revenue. Secondary outcomes are the changes to the micronutrient composition of the UK diet. Results Scenario (A) results in 7770 (95% credible intervals 7150 to 8390) deaths averted and a reduction in GHG emissions of 18 683 (14 665to 22 889) ktCO2e/year. Estimated annual revenue is £2.02 (£1.98 to £2.06) billion. Scenario (B) results in 2685 (1966 to 3402) extra deaths and a reduction in GHG emissions of 15 228 (11 245to 19 492) ktCO2e/year. Conclusions Incorporating the societal cost of GHG into the price of foods could save 7770 lives in the UK each year, reduce food-related GHG emissions and generate substantial tax revenue. The revenue neutral scenario (B) demonstrates that sustainability and health goals are not always aligned. Future work should focus on investigating the health impact by population subgroup and on designing fiscal strategies to promote both sustainable and healthy diets.
Resumo:
The problem of technology obsolescence in information intensive businesses (software and hardware no longer being supported and replaced by improved and different solutions) and a cost constrained market can severely increase costs and operational, and ultimately reputation risk. Although many businesses recognise technological obsolescence, the pervasive nature of technology often means they have little information to identify the risk and location of pending obsolescence and little money to apply to the solution. This paper presents a low cost structured method to identify obsolete software and the risk of their obsolescence where the structure of a business and its supporting IT resources can be captured, modelled, analysed and the risk to the business of technology obsolescence identified to enable remedial action using qualified obsolescence information. The technique is based on a structured modelling approach using enterprise architecture models and a heatmap algorithm to highlight high risk obsolescent elements. The method has been tested and applied in practice in two consulting studies carried out by Capgemini involving three UK police forces. However the generic technique could be applied to any industry based on plans to improve it using ontology framework methods. This paper contains details of enterprise architecture meta-models and related modelling.
Resumo:
Knowledge on the relative importance of alternative sources of human campylobacteriosis is important in order to implement effective disease prevention measures. The objective of this study was to assess the relative importance of three key exposure pathways (travelling abroad, poultry meat, pet contact) for different patient age groups in Switzerland. With a stochastic exposure model data on Campylobacter incidence for the years 2002-2007 were linked with data for the three exposure pathways and the results of a case-control study. Mean values for the population attributable fractions (PAF) over all age groups and years were 27% (95% CI 17-39) for poultry consumption, 27% (95% CI 22-32) for travelling abroad, 8% (95% CI 6-9) for pet contact and 39% (95% CI 25-50) for other risk factors. This model provided robust results when using data available for Switzerland, but the uncertainties remained high. The output of the model could be improved if more accurate input data are available to estimate the infection rate per exposure. In particular, the relatively high proportion of cases attributed to 'other risk factors' requires further attention.
Resumo:
The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management.