999 resultados para ricostruzione 3D triangolazione laser computervision
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Contém resumo
Resumo:
The aim of this study was to evaluate the combination of abdominoplasty with liposuction of both flanks with regards to length of scar, complications, and patient's satisfaction. A retrospective analysis of 35 patients who underwent esthetic abdominoplasty at our institution between 2002 and 2004 was performed. Thirteen patients underwent abdominoplasty with liposuction of both flanks, 22 patients underwent conventional abdominoplasty. Liposuction of the flanks did not increase the rate of complications of the abdominoplasty procedures. We found a tendency toward shorter scars in patients who underwent abdominoplasty combined with liposuction of the flanks. Implementation of 3-dimensional laser surface scanning to objectify the postoperative outcomes, documented a comparable degree of flatness of the achieved body contouring in both procedures. 3-dimensional laser surface scanning can be a valuable tool to objectify assessment of postoperative results.
Resumo:
OBJECTIVE: The purpose of this study was to compare the use of different variables to measure the clinical wear of two denture tooth materials in two analysis centers. METHODS: Twelve edentulous patients were provided with full dentures. Two different denture tooth materials (experimental material and control) were placed randomly in accordance with the split-mouth design. For wear measurements, impressions were made after an adjustment phase of 1-2 weeks and after 6, 12, 18, and 24 months. The occlusal wear of the posterior denture teeth of 11 subjects was assessed in two study centers by use of plaster replicas and 3D laser-scanning methods. In both centers sequential scans of the occlusal surfaces were digitized and superimposed. Wear was described by use of four different variables. Statistical analysis was performed after log-transformation of the wear data by use of the Pearson and Lin correlation and by use of a mixed linear model. RESULTS: Mean occlusal vertical wear of the denture teeth after 24 months was between 120μm and 212μm, depending on wear variable and material. For three of the four variables, wear of the experimental material was statistically significantly less than that of the control. Comparison of the two study centers, however, revealed correlation of the wear variables was only moderate whereas strong correlation was observed among the different wear variables evaluated by each center. SIGNIFICANCE: Moderate correlation was observed for clinical wear measurements by optical 3D laser scanning in two different study centers. For the two denture tooth materials, wear measurements limited to the attrition zones led to the same qualitative assessment.
Resumo:
The graffiti on pottery discovered on the site of Aventicum (Avenches, VD/Switzerland) form the largest corpus of minor inscriptions of the Roman Empire studied until now. Indeed, a total of 1828 graffiti have been found. The reading and the recording of the inscriptions are generally dependent on the state of conservation of the graffito and its support. In numerous cases, only a pale shadow of the inscription is visible, which makes traditional observations, such as visual observations with the naked eye, unsuitable for its decipherment. Consequently, advanced techniques have been applied for enhancing the readability of such inscriptions. In our paper we show the efficiency of 3D laser profilometry as well as high resolution photography as powerful means to decipher illegible engraved inscriptions. The use of such analyses to decipher graffiti on pottery or on other materials enables a better understanding of minor inscriptions and improves the knowledge of the daily life of ancient populations substantially.
Resumo:
The geometric characterisation of tree orchards is a high-precision activity comprising the accurate measurement and knowledge of the geometry and structure of the trees. Different types of sensors can be used to perform this characterisation. In this work a terrestrial LIDAR sensor (SICK LMS200) whose emission source was a 905-nm pulsed laser diode was used. Given the known dimensions of the laser beam cross-section (with diameters ranging from 12 mm at the point of emission to 47.2 mm at a distance of 8 m), and the known dimensions of the elements that make up the crops under study (flowers, leaves, fruits, branches, trunks), it was anticipated that, for much of the time, the laser beam would only partially hit a foreground target/object, with the consequent problem of mixed pixels or edge effects. Understanding what happens in such situations was the principal objective of this work. With this in mind, a series of tests were set up to determine the geometry of the emitted beam and to determine the response of the sensor to different beam blockage scenarios. The main conclusions that were drawn from the results obtained were: (i) in a partial beam blockage scenario, the distance value given by the sensor depends more on the blocked radiant power than on the blocked surface area; (ii) there is an area that influences the measurements obtained that is dependent on the percentage of blockage and which ranges from 1.5 to 2.5 m with respect to the foreground target/object. If the laser beam impacts on a second target/object located within this range, this will affect the measurement given by the sensor. To interpret the information obtained from the point clouds provided by the LIDAR sensors, such as the volume occupied and the enclosing area, it is necessary to know the resolution and the process for obtaining this mesh of points and also to be aware of the problem associated with mixed pixels.
Resumo:
The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios
Resumo:
Obiettivo della tesi, oltre ad una descrizione della tecnica laser a scansione ed alla presentazione di alcune realizzazioni tipiche in ambito terrestre, è relazionare su una esperienza effettuata di recente su una applicazione particolare, il rilievo tridimensionale di campioni di pavimentazioni stradali in conglomerato bituminoso per documentarne la tessitura tramite parametri classici e nuovi indicatori resi possibili dal dato tridimensionale. L’attività di tesi si è concentrata soprattutto nei problemi della fase di acquisizione.
L'area dei Lungarni di Pisa nel tardo Medioevo (XIV-XV secolo). un tentativo di ricostruzione in 3D.
Resumo:
Lo scopo di questa ricerca è la ricostruzione dei Lungarni di Pisa nel Tardo Medioevo (XIV-XV secolo); lo studio intende sottolineare le trasformazioni urbanistiche che hanno cambiato il volto di Pisa nel corso del tempo e ricordare che l’area fluviale ebbe un ruolo di primo piano come baricentro commerciale ed economico della città, vocazione che si è in gran parte persa con l’età moderna e contemporanea. La metodologia seguita, affinata e perfezionata durante la partecipazione al progetto Nu.M.E. (Nuovo Museo Elettronico della Città di Bologna), si basa sull’analisi e il confronto di fonti eterogenee ma complementari, che includono precedenti studi di storia dell’urbanistica, un corpus di documentazione di epoca medievale (provvedimenti amministrativi come gli Statuti del Comune di Pisa, ma anche descrizioni di cronisti e viaggiatori), fonti iconografiche, tra cui vedute e mappe cinquecentesche o successive, e fonti materiali, come le persistenze medievali ancora osservabili all’interno degli edifici ed i reperti rinvenuti durante alcune campagne di scavo archeologiche. Il modello 3D non è concepito come statico e “chiuso”, ma è liberamente esplorabile all’interno di un engine tridimensionale; tale prodotto può essere destinato a livelli di utenza diversi, che includono sia studiosi e specialisti interessati a conoscere un maggior numero di informazioni e ad approfondire la ricerca, sia semplici cittadini appassionati di storia o utenti più giovani, come studenti di scuole medie superiori e inferiori.
Resumo:
A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.
Resumo:
El objetivo del proyecto consiste en la realización de un modelo tridimensional,mediante la utilización de un equipo laser escáner 3D, de los fragmentos de unos globos de lava emergidos de las erupciones que ocurrieron en la isla canaria de ElHierro, en Octubre de 2011. Se persigue con dicho modelo, conseguir una muestra virtual de unos restos geológicos que, por su naturaleza, son extremadamente frágiles y así permitir que puedan ser estudiados con sus características de la forma más completa posible sin necesidad de ser manipulados incluso cuando las muestras físicas se hayan deteriorado.
Resumo:
The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions.
Resumo:
Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.