985 resultados para ribonucleic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Journal Article

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin (5-hydroxytryptamine, 5-HT) is involved in gastrointestinal tract (GIT) motor functions through binding to specific receptors located in the GIT walls. The objectives of the current study were to compare mRNA levels and binding sites of 5-HT(4) receptors (5-HTR(4)) in smooth muscle layers from the fundus abomasi, pylorus, ileum, cecum, proximal loop of the ascending colon (PLAC), and external loop of the spiral colon (ELSC) of healthy dairy cows, and to verify whether mRNA and protein expression were correlated. Smooth muscle samples were prepared by scraping the mucosa and submucosa from full-thickness intestinal wall samples. The mRNA levels of 5-HTR(4) were measured by real-time PCR and expressed relative to those of the housekeeping gene glyceraldehyde phosphate dehydrogenase. Binding studies were performed using the 5-HTR(4) antagonist [(3)H]GR113808. The mRNA levels of 5-HTR(4) were affected (P < 0.05) by location along the GIT. The mRNA levels of 5-HTR(4) in the ELSC and the ileum were greater than in the PLAC (P = 0.05 and P = 0.07, respectively) but similar to those of all other locations. The competitive binding of [(3)H]GR113808 to suspended membranes from the fundus abomasi, pylorus, cecum, and ELSC was best fit by a 2-site receptor model, whereas it was best fit by a 1-site receptor model in the ileum and PLAC. The mRNA levels and numbers of 5-HTR(4) were not correlated (r = 0.14; P = 0.71). In conclusion, mRNA and binding sites for 5-HTR(4) are present in the smooth muscle layer of the entire GIT of dairy cows and may play a role with respect to motility. The effects of activation of this receptor subtype may be different among GIT locations due to differences in the amount of high- relative to low-affinity binding sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear receptors (NR) are ligand-activated transcription factors that regulate different metabolic pathways by influencing the expression of target genes. The current study examined mRNA abundance of NR and NR target genes at different sites of the gastrointestinal tract (GIT) and the liver of healthy dogs (Beagles; n = 11). Samples of GIT and liver were collected postmortem and homogenized, total RNA was extracted and reverse transcribed, and gene expression was quantified by real-time reverse-transcription PCR relative to the mean of 3 housekeeping genes (beta-actin, glyceraldehyde-3-phosphate dehydrogenase, and ubi-quitin). Differences were observed (P < or = 0.05) in the mRNA abundance among stomach (St), duodenum (Du), jejunum (Je), ileum (Il), and colon (Col) for NR [pregnane X receptor (Du, Je > Il, Col > St), peroxisome proliferator-associated receptor gamma (St, Du, Col > Je, Il), constitutive androstane receptor (Je, Du > Il, Col), and retinoid x receptor alpha (Du > Il)] and NR target genes [glutathione-S-transferase A3-3 (Du > Je > St, Il; St > Col), phenol-sulfating phenol sulfotransferase 1A1 (Du, Je > Il, St; Col > St), cytochrome P450 3A12 (Du, Je > St, Il, Col), multiple drug resistance gene 1 (Du, Je, Il, Col > St), multiple drug resistance-associated protein 2 (Je, Du > Il > St, Col), multiple drug resistance-associated protein 3 (Col > St > Il; Du > Je, Il; St > Il), NR corepressor 2 (St > Il, Col), and cytochrome P450 reductase (St, Du, Je > Il, Col)], but not for peroxisome proliferator-associated receptor alpha. Differences (P > 0.05) in mRNA abundance in the liver relative to the GIT were also observed. In conclusion, the presence of numerous differences in expression of NR and NR target genes in different parts of the GIT and in liver of healthy dogs may be associated with location-specific functions and regulation of GIT regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. RNA was isolated from crude nuclear preparations and from ribosomes derived from rat brain and liver. Nuclear RNA was obtained by lysis of the nuclei with sodium dodecyl sulphate, followed by denaturation and removal of DNA and protein with hot phenol. 2. Base composition analyses indicated that the cerebral nuclear RNA preparation contained a higher proportion of non-ribosomal RNA than the analogous hepatic preparation. 3. Sucrose-density-gradient analyses revealed a heterogeneous profile for each nuclear RNA preparation, with two major peaks possessing the sedimentation properties of ribosomal RNA (18s and 28s). 4. Template activities of both preparations were widely distributed through the sucrose density gradients. 5. The cerebral nuclear RNA preparation was more active than the hepatic nuclear RNA preparation in promoting amino acid incorporation in cell-free systems from Escherichia coli and rat brain. 6. Cerebral nuclear RNA stimulated amino acid incorporation in a cerebral ribosomal system even in the presence of an excess of purified E. coli transfer RNA. 7. It is concluded that a significant proportion of cerebral nuclear RNA has the characteristics of messenger RNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The characteristics of an in vitro polyuridylic acid dependent amino acid incorporating system prepared from germinating macroconidia of Microsporum canis are described. The incorporation of 14C-phenylalanine into polyphenylalanine is dependent on S-30 extract, adenosine triphosphate, magnesium ions and polyuridylic acid. Incorporation is slightly enhanced by yeast transfer ribonucleic acid and pyruvate kinase. The system is highly sensitive to ribonuclease, puromycin and miconazole (an antifungal agent), moderately sensitive to sodium fluoride and much less sensitive to phenethylalcohol, cycloheximide, chloramphenicol and deoxyribonuclease. Cell-free extract from ungerminated conidia has less capacity to synthesize the protein and during germination a marked increase in the protein synthetic activity is observed. The results from experiments wherein ribosomes and S-100 fraction from germinated and ungerminated spores are interchanged, revealed that the defect in the extract from the ungerminated spore is in the ribosomes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

De récentes découvertes montrent le rôle important que joue l’acide ribonucléique (ARN) au sein des cellules, que ce soit le contrôle de l’expression génétique, la régulation de plusieurs processus homéostasiques, en plus de la transcription et la traduction de l’acide désoxyribonucléique (ADN) en protéine. Si l’on veut comprendre comment la cellule fonctionne, nous devons d’abords comprendre ses composantes et comment ils interagissent, et en particulier chez l’ARN. La fonction d’une molécule est tributaire de sa structure tridimensionnelle (3D). Or, déterminer expérimentalement la structure 3D d’un ARN s’avère fort coûteux. Les méthodes courantes de prédiction par ordinateur de la structure d’un ARN ne tiennent compte que des appariements classiques ou canoniques, similaires à ceux de la fameuse structure en double-hélice de l’ADN. Ici, nous avons amélioré la prédiction de structures d’ARN en tenant compte de tous les types possibles d’appariements, dont ceux dits non-canoniques. Cela est rendu possible dans le contexte d’un nouveau paradigme pour le repliement des ARN, basé sur les motifs cycliques de nucléotides ; des blocs de bases pour la construction des ARN. De plus, nous avons dévelopées de nouvelles métriques pour quantifier la précision des méthodes de prédiction des structures 3D des ARN, vue l’introduction récente de plusieurs de ces méthodes. Enfin, nous avons évalué le pouvoir prédictif des nouvelles techniques de sondage de basse résolution des structures d’ARN.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Myo-inositol hexaphosphate (IP6) or phytic acid is found mostly in cereals and legumes and is thought to possess anti-carcinogenic properties. Aim: To isolate and identify faecal bacteria capable of phytic acid metabolism and to assess the effectiveness of prebiotics (dietary oligosaccharides, metabolised by selective colonic bacteria) in preserving the integrity of phytic acid. Methods: Faecal samples from three volunteers were used in continuous culture experiments under varying conditions of pH, substrate concentration and dilution rates, seventy three different isolates cultured at steady state were then screened for phytic acid metabolism and identified through partial sequencing of their 16S rRNA genes (16S ribosomal ribonucleic acid). Utilisation of phytic acid was also assessed in a continuous culture system enriched with prebiotic fructooligosaccharides (FOS). Results: Bacteroides spp., Clostridium spp. and facultatively anaerobic bacteria generally appeared to maintain viable counts in the presence of phytic acid. Bifidobacterium spp. and Lactobacillus spp. appeared less able to maintain viable counts in the presence of phytic acid. These results were confirmed by an increase in viable counts of Bacteroides spp., Clostridium spp. and a decrease in viable counts of Bifidobacterium spp. and Lactobacillus spp. once phytic acid was introduced to a FOS enriched continuous culture. Conclusions: The phytate metabolising biodiversity from the human large intestine does not appear to encompass major bacterial genera associated with beneficial or benign health effects (e.g. Lactobacillus spp. and Bifidobacterium spp).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our understanding of the mechanisms of the actions of oestrogens and progestins have evolved from the simple concept of nuclear receptor-mediated regulation of transcription to a highly sophisticated, finely tuned interplay between various coregulators, other signaling cascades and transcription factors. The net result of these complex regulatory mechanisms is a steroid-, cell-, or tissue-specific action of oestrogens and progestins. their antagonists or selective modulators of their receptors. In this review, we have attempted to shed some light on the regulation of the actions of oestrogens and progestins on the human endometrium. (C) 2003 Elsevier Science Ltd. All rights reserved.