496 resultados para ribbon synapse
Resumo:
BACKGROUND: Human immunodeficiency virus (HIV) takes advantage of multiple host proteins to support its own replication. The gene ZNRD1 (zinc ribbon domain-containing 1) has been identified as encoding a potential host factor that influenced disease progression in HIV-positive individuals in a genomewide association study and also significantly affected HIV replication in a large-scale in vitro short interfering RNA (siRNA) screen. Genes and polymorphisms identified by large-scale analysis need to be followed up by means of functional assays and resequencing efforts to more precisely map causal genes. METHODS: Genotyping and ZNRD1 gene resequencing for 208 HIV-positive subjects (119 who experienced long-term nonprogression [LTNP] and 89 who experienced normal disease progression) was done by either TaqMan genotyping assays or direct sequencing. Genetic association analysis was performed with the SNPassoc package and Haploview software. siRNA and short hairpin RNA (shRNA) specifically targeting ZNRD1 were used to transiently or stably down-regulate ZNRD1 expression in both lymphoid and nonlymphoid cells. Cells were infected with X4 and R5 HIV strains, and efficiency of infection was assessed by reporter gene assay or p24 assay. RESULTS: Genetic association analysis found a strong statistically significant correlation with the LTNP phenotype (single-nucleotide polymorphism rs1048412; [Formula: see text]), independently of HLA-A10 influence. siRNA-based functional analysis showed that ZNRD1 down-regulation by siRNA or shRNA impaired HIV-1 replication at the transcription level in both lymphoid and nonlymphoid cells. CONCLUSION: Genetic association analysis unequivocally identified ZNRD1 as an independent marker of LTNP to AIDS. Moreover, in vitro experiments pointed to viral transcription as the inhibited step. Thus, our data strongly suggest that ZNRD1 is a host cellular factor that influences HIV-1 replication and disease progression in HIV-positive individuals.
Resumo:
We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to alpha-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.
Resumo:
Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.
Resumo:
Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.
Resumo:
Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.
Resumo:
Environmental enrichment paradigms in adult laboratory animals, consisting of physical, perceptual, and social stimulation, have been shown to affect synapse and cell morphology in sensory cortex and enhance learning ability, whereas enrichment, which is in harmony with the animal's natural habitat may have even greater implications for plasticity. Previous studies in our laboratory have shown that whisker stimulation induced the formation of synapses and spines in the corresponding barrel. In the present study adult C57/Bl6J female laboratory mice at 6 weeks of age were placed during 2 months in a protected enrichment enclosure in a forest clearing at the Chisti Les Biological Station, Tvier, Russia. We analyzed neuropil ultrastructure in the C2 barrel using serial-section electron microscopy on a total of eight mice (n=4 enriched, n=4 standard cagemate controls). Quantitative analyses of volumes of neuropil showed a significant increase in excitatory and inhibitory synapses on spines and excitatory synapses on dendritic shafts in the C2 barrel in the enriched group compared with standard cagemate controls. These results demonstrate that naturalistic experience alters the synaptic circuitry in layer IV of the somatosensory cortex, the first cortical relay of sensory information, leaving a lasting trace that may guide subsequent behavior.
Resumo:
This report documents the Iowa Department of Transportation's accomplishments and ongoing efforts in response to 39 recommendations proposed by the Governor's Blue Ribbon Transportation Task Force at the end of 1995. Governor Terry Branstad challenged the Task Force to "maximize the benefits of each dollar spent from the Road Use Tax Fund."
Resumo:
The Munc13 gene family encodes molecules located at the synaptic active zone that regulate the reliability of synapses to encode information over a wide range of frequencies in response to action potentials. In the CNS, proteins of the Munc13 family are critical in regulating neurotransmitter release and synaptic plasticity. Although Munc13-1 is essential for synaptic transmission, it is paradoxical that Munc13-2 and Munc13-3 are functionally dispensable at some synapses, although their loss in other synapses leads to increases in frequency-dependent facilitation. We addressed this issue at the calyx of Held synapse, a giant glutamatergic synapse that we found to express all these Munc13 isoforms. We studied their roles in the regulation of synaptic transmission and their impact on the reliability of information transfer. Through detailed electrophysiological analyses of Munc13-2, Munc13-3, and Munc13-2-3 knock-out and wild-type mice, we report that the combined loss of Munc13-2 and Munc13-3 led to an increase in the rate of calcium-dependent recovery and a change in kinetics of release of the readily releasable pool. Furthermore, viral-mediated overexpression of a dominant-negative form of Munc13-1 at the calyx demonstrated that these effects are Munc13-1 dependent. Quantitative immunohistochemistry using Munc13-fluorescent protein knock-in mice revealed that Munc13-1 is the most highly expressed Munc13 isoform at the calyx and the only one highly colocalized with Bassoon at the active zone. Based on these data, we conclude that Munc13-2 and Munc13-3 isoforms limit the ability of Munc13-1 to regulate calcium-dependent replenishment of readily releasable pool and slow pool to fast pool conversion in central synapses.
Resumo:
Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fi ber–granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fi bers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These fi ndings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.
Resumo:
Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.
Resumo:
Tutkielman tavoitteena oli selvittää Roosanauha kampanjan tuotteiden ostoon liittyvää aikeen muodostumista kuluttajilla. Lisäksi tavoitteena oli selvittää onko aikeen muodostumisessa eroja uuden pinkin värin tai lahjoitus ominaisuuden osalta. Tutkimus toteutettiin sähköisenä kyselynä, jota analysoitiin tilastollisin menetelmin, lähinnä korrelaatioiden avulla. Tutkimus ei saavuttanut toivottua päämääräänsä lähinnä huonoksi jääneen vastausten kokonaismäärän vuoksi.Joitakin suuntaa antavia tuloksia pystyttiin kuitenkin tunnistamaan. Tuloksissa oli viitteitä lahjoitusominaisuuden tärkeydestä kuluttajille sekä vaaleanpunaiseen väriin positiivisesti asennoitumisesta. Kampanjan jatkoa ajatellen markkinoijien on syytä huomata tuloksissa ilmennyt värin tärkeä rooli sekä lahjoitusominaisuudelle painottunut sosiaalisten normien vahvuus.
Resumo:
Visceral afferents send information via cranial nerves to the nucleus tractus solitarius (NTS). The NTS is the initial step of information processing that culminates in homeostatic reflex responses. Recent evidence suggests that strong afferent synaptic responses in the NTS are most often modulated by depression and this forms a basic principle of central integration of these autonomic pathways. The visceral afferent synapse is uncommonly powerful at the NTS with large unitary response amplitudes and depression rather than facilitation at moderate to high frequencies of activation. Substantial signal depression occurs through multiple mechanisms at this very first brainstem synapse onto second order NTS neurons. This review highlights new approaches to the study of these basic processes featuring patch clamp recordings in NTS brain slices and optical techniques with fluorescent tracers. The vanilloid receptor agonist, capsaicin, distinguishes two classes of second order neurons (capsaicin sensitive or capsaicin resistant) that appear to reflect unmyelinated and myelinated afferent pathways. The differences in cellular properties of these two classes of NTS neurons indicate clear functional differentiation at both the pre- and postsynaptic portions of these first synapses. By virtue of their position at the earliest stage of these pathways, such mechanistic differences probably impart important differentiation in the performance over the entire reflex pathways.
Resumo:
Ribbon from Niagara Races. This race was held on October 8, 9, 10 and 12 of 1861. The stewards of the race are listed and they include the Mayor of St. Catharines James G. Currie. The ribbon is stained at the top. This does not affect the writing on the ribbon, 1861.
Resumo:
Niagara U.E. [United Empire] Loyalists ribbon marked 1784-1884. The ribbon has pictures of a crown and a beaver on it. The ribbon is slightly faded.
Resumo:
Customs notice for 10 yards of veiling ribbon to Welland Woodruff, Apr. 4, 1887