935 resultados para retrodirective array
Resumo:
A novel retrodirective array (RDA) architecture is proposed which utilises a special case spectral signature embedded within the data payload as pilot signals. With the help of a pair of phase-locked-loop (PLL) based phase conjugators (PCs) the RDA’s response to other unwanted and/or unfriendly interrogating signals can be disabled, leading to enhanced secrecy performance directly in the wireless physical layer. The effectiveness of the proposed RDA system is experimentally demonstrated.
Resumo:
In this paper, we verify a new phase conjugating architecture suitable for deployment as (lie core building block in retrodirective antenna arrays, which can be scaled to any number of elements in a modular way without impacting on complexity. Our solution is based on a modified in-phase and quadrature modulator architecture, which completely resolves four major shortcomings of the conventional mixer-based approach currently used for the synthesis of phase conjugated energy derived from a sampled incoming wavefront. 1) The architecture presented removes the need for a local oscillator running at twice the RF signal frequency to be conjugated. 2) It maintains a constant transmit power even if receive power goes as low as -120 dBm. 3) All unwanted re-transmit signal products are suppressed by at least 40 dB. 4) The issue of poor RF-IF leakage prevalent in mixer-based phase-conjugation solutions is completely mitigated. The circuit has also been shown to have high conjugation accuracy (better than +/-1 degrees at -60-dBm input). Near theoretically perfect experimental monostatic and bistatic results are presented for a ten-element retrodirective array constructed using the new phase conjugation architecture.
Resumo:
This article describes a practical demonstration of a complete full-duplex “amplitude shift keying (ASK)” retrodirective radio frequency identification (RFID) transceiver array.The interrogator incorporates a “retrodirective array (RDA)” with a dual-conversion phase conjugating architecture in order to achieve better performance than is possible with conventional RFID solutions. Here mixers phase conjugate the incoming signal and a carrier recovery circuit recovers incoming angle of arrival phase information of an encoded amplitude shift keyed signal. The resulting interrogator provides a receiver sensitivity level of -109 dBm. A four element square patch RDA gives a 3 dB automatic beam steering angle of acceptance of ±45°. When compared to an RFID system operating by conventional (non-retrodirective) means retrodirective action leads to improved range extension of up to 16 times at ±45°. Operator pointing accuracy requirements are also reduced due to automatic retrodirective self-pointing. These features significantly enhance deployment opportunities requiring long range low equivalent isotropic radiation power (EIRP) and/or RFID tagging of moving platforms. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:160–164, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27258
Resumo:
In this letter, we show how a 2.4-GHz retrodirective array operating in a multipath rich environment can be utilized in order to spatially encrypt digital data. For the first time, we give experimental evidence that digital data that has no mathematical encryption applied to it can be successfully recovered only when it is detected with a receiver that is polarization-matched to that of a reference continuous-wave (CW) pilot tone signal. In addition, we show that successful detection with low bit error rate (BER) will only occur within a highly constrained spatial region colocated close to the position of the CW reference signal. These effects mean that the signal cannot be intercepted and its modulated data recovered at locations other than the constrained spatial region around the position from which the retrodirective communication was initiated.
Resumo:
This paper presents a new architecture together with practical results for a high performance analogue retrodirective array architecture with the following significant advantages: (1) It is able to constructively combine signals on receive, as well as on transmit, a feature not seen before on this type of array, (2) It is capable of operating with real life communication received signal levels as low as -120dBm. This work opens the way for fully co-operating Retrodirective arrays for use on un-stabilized co-operating mobile platforms where maximum S/N simultaneously on receive and on retransmit is automatically guaranteed.
Resumo:
Practical demonstration of the operational advantages gained through the use of a co-operating retrodirective array (RDA) basestation and Van Atta node arrangements is discussed. The system exploits a number of inherent RDA features to provide analogue real time multifunctional operation at low physical complexity. An active dual-conversion four element RDA is used as the power distribution source (basestation) while simultaneously achieving a receive sensitivity level of ??109 dBm and 3 dB automatic beam steering angle of ??45??. When mobile units are each equipped with a semi-passive four element Van Atta array, it is shown mobile device orientation issues are mitigated and optimal energy transfer can occur because of automatic beam formation resulting from retrodirective self-pointing action. We show that operation in multipath rich environments with or without line of sight acts to reduce average power density limits in the operating volume with high energy density occurring at mobile nodes sites only. The system described can be used as a full duplex ASK communications link, or, as a means for remote node charging by wireless means, thereby enhancing deployment opportunities between unstabilised moving platforms.
Resumo:
This article describes by means of a simple model how signal recombination effects behave under the influence of phase conjugating retrodirective array (RDA) technology. A two-ray ground reflection model is used to predict the operational advantages of RDA technology in multipath rich environments. The simulation results show that advantageous signal recombination occurs due to automatic self-phasing. As the number of elements in the RDA increases, the fading effect normally observed due to out of phase multipath signal is mitigated to the extent that the system approaches that of one operating in a free space environment. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1987–1989, 2013
Resumo:
This letter presents a simple tracking phased locked loop (PLL) that can be used to track phase-modulated signals and provide a phase-conjugated signal for retrodirective retransmission. The configuration allows the retrodirective antenna to directly track phase-modulated signals with no requirement for a separate continuous wave (CW) pilot tone. The ability to directly track phase-modulated signals is carried out using a 4× multiplier on the tracking PLL reference signal. Practical phase conjugation results are presented for a five-element retrodirective array simultaneously sending and receiving phase-modulated (QPSK) signals. Signals with levels as low as -122 dBm can be phase-conjugated and retransmitted with 30 dBm EIRP.
Resumo:
In this paper a new type of architecture for secure wireless key establishment is proposed. A retrodirective array (RDA) that is configured to receive and re-transmit at different frequencies is utilized as a relay node. The RDA is able to respond in ‘real-time’, reducing the required number of time slots to two. More importantly, in this architecture equivalent reciprocal wireless channels between legitimate keying nodes can be randomly updated within one channel coherence time period, leading to greatly increased key generation rates (KGRs) in slow fading environment. The secrecy performance of this RDA assisted key generation system is evaluated under several eavesdropping strategies and it is shown that it outperforms previous relay key generation systems.
Resumo:
A method for producing a retrodirective (self-tracking) antenna, which can also be operated as a phased (selectively pointed) array through the addition of a simple switching circuit and DC bias offset adjustment, is presented. Phase adjustment to individual antenna elements is shown to be readily carried out by a simple frequency pushing technique, applied to a PLL circuit, thus replacing the requirement for additional phase shifters. Practical results when applied to a ten-element array operating at 2.4 GHz are shown for both modes of operation.
Resumo:
At large elevation angles away from boresight the performance of planar phased antenna arrays for circularly polarized, CP, signals suffers from significant gain reduction, worsening of the circular polarization purity, increased pointing error and unwanted dominantly specular lobe radiation. The mechanisms governing this performance deterioration and suggestions for possible rectification are for the first time elaborated in this paper. The points raised in this paper are important when CP retrodirective arrays are to be deployed in self-tracking satellite and terrestrial communication systems mounted on mobile platforms.
Resumo:
The mechanism by which a retrodirective Rotman lens operates is examined theoretically and prediction is compared with measurement. By deriving the reflection matrix based on the phase delay relationship between the beam ports and the array ports we show that if the phase delay difference between neighbouring ports is constrained in a particular way that the reflection matrix becomes an inverse diagonal matrix and the Rotman lens functions as a Van Atta Array hence can perform retrodirective reflection. Further, the primary factors governing the bandwidth and beam pointing error of the lens are elaborated.