900 resultados para restriction enzyme
Resumo:
Novel restriction enzymes can be created by fusing the nuclease domain of FokI endonuclease with defined DNA binding domains. Recently, we have characterized a domain (Zα) from the N-terminal region of human double-stranded RNA adenosine deaminase (hADAR1), which binds the Z-conformation with high specificity. Here we report creation of a conformation-specific endonuclease, Zα nuclease, which is a chimera of Zα and FokI nuclease. Purified Zα nuclease cleaves negatively supercoiled plasmids only when they contain a Z-DNA forming insert, such as (dC-dG)13. The precise location of the cleavage sites was determined by primer extension. Cutting has been mapped to the edge of the B-Z junction, suggesting that Zα nuclease binds within the Z-DNA insert, but cleaves in the nearby B-DNA, by using a mechanism similar to type IIs restriction enzymes. These data show that Zα binds Z-DNA in an environment similar to that in a cell. Zα nuclease, a structure-specific restriction enzyme, may be a useful tool for further study of the biological role of Z-DNA.
Resumo:
We have reported some type II restriction-modification (RM) gene complexes on plasmids resist displacement by an incompatible plasmid through postsegregational host killing. Such selfish behavior may have contributed to the spread and maintenance of RM systems. Here we analyze the role of regulatory genes (C), often found linked to RM gene complexes, in their interaction with the host and the other RM gene complexes. We identified the C gene of EcoRV as a positive regulator of restriction. A C mutation eliminated postsegregational killing by EcoRV. The C system has been proposed to allow establishment of RM systems in new hosts by delaying the appearance of restriction activity. Consistent with this proposal, bacteria preexpressing ecoRVC were transformed at a reduced efficiency by plasmids carrying the EcoRV RM gene complex. Cells carrying the BamHI RM gene complex were transformed at a reduced efficiency by a plasmid carrying a PvuII RM gene complex, which shares the same C specificity. The reduction most likely was caused by chromosome cleavage at unmodified PvuII sites by prematurely expressed PvuII restriction enzyme. Therefore, association of the C genes of the same specificity with RM gene complexes of different sequence specificities can confer on a resident RM gene complex the capacity to abort establishment of a second, incoming RM gene complex. This phenomenon, termed “apoptotic mutual exclusion,” is reminiscent of suicidal defense against virus infection programmed by other selfish elements. pvuIIC and bamHIC genes define one incompatibility group of exclusion whereas ecoRVC gene defines another.
Resumo:
Background: Reduced-representation sequencing technology iswidely used in genotyping for its economical and efficient features. A popular way to construct the reduced-representation sequencing libraries is to digest the genomic DNA with restriction enzymes. A key factor of this method is to determine the restriction enzyme(s). But there are few computer programs which can evaluate the usability of restriction enzymes in reduced-representation sequencing. SimRAD is an R package which can simulate the digestion of DNA sequence by restriction enzymes and return enzyme loci number as well as fragment number. But for linkage mapping analysis, enzyme loci distribution is also an important factor to evaluate the enzyme. For phylogenetic studies, comparison of the enzyme performance across multiple genomes is important. It is strongly needed to develop a simulation tool to implement these functions. Results: Here, we introduce a Perl module named RestrictionDigest with more functions and improved performance. It can analyze multiple genomes at one run and generate concise comparison of enzyme performance across the genomes. It can simulate single-enzyme digestion, double-enzyme digestion and size selection process and generate comprehensive information of the simulation including enzyme loci number, fragment number, sequences of the fragments, positions of restriction sites on the genome, the coverage of digested fragments on different genome regions and detailed fragment length distribution. Conclusions: RestrictionDigest is an easy-to-use Perl module with flexible parameter settings.With the help of the information produced by the module, researchers can easily determine the most appropriate enzymes to construct the reduced-representation libraries to meet their experimental requirements.
Resumo:
The genetic structure of rice tungro bacilliform virus (RTBV) populations within and between growing sites was analyzed in a collection of natural field isolates from different rice varieties grown in eight tungro-endemic sites of the Philippines. Total DNA extracts from 345 isolates were digested with EcoRV restriction enzyme and hybridized with a full-length probe of RTBV, a procedure shown in preliminary experiments capable of revealing high levels of polymorphism in RTBV field isolates. In the total population, 17 distinct EcoRV-based genome profiles (genotypes) were identified and used as indicators for virus diversity. Distinct sets of genotypes occurred in Isabela and North Cotabato provinces suggesting a geographic isolation of virus populations. However, among the sites in each province, there were few significant differences in the genotype compositions of virus populations. The number of genotypes detected at a site varied from two to nine with a few genotypes dominating. In general the isolates at a site persisted from season to season indicating a genetic stability for the local virus population. Over the sampling time, IRRI rice varieties, which have green leafhopper resistance genes, supported similar virus populations to those supported by other varieties, indicating that the variety of the host exerted no apparent selection pressures. Insect transmission experiments on selected RTBV field isolates showed that dramatic shifts in genotype and phenotype distributions can occur in response to host /environmental shifts.
Resumo:
We have recently demonstrated the geographic isolation of rice tungro bacilliform virus (RTBV) populations in the tungro-endemic provinces of Isabela and North Cotabato, Philippines. In this study, we examined the genetic structure of the virus populations at the tungro-outbreak sites of Lanao del Norte, a province adjacent to North Cotabato. We also analyzed the virus populations at the tungro-endemic sites of Subang, Indonesia, and Dien Khanh, Vietnam. Total DNA extracts from 274 isolates were digested with EcoRV restriction enzyme and hybridized with a full-length probe of RTBV. In the total population, 22 EcoRV-restricted genome profiles (genotypes) were identified. Although overlapping genotypes could be observed, the outbreak sites of Lanao del Norte had a genotype combination distinct from that of Subang or Dien Khanh but a genotype combination similar to that identified earlier from North Cotabato, the adjacent endemic province. Sequence analysis of the intergenic region and part of the ORF1 RTBV genome from randomly selected genotypes confirms the geographic clustering of RTBV genotypes and, combined with restriction analysis, the results suggest a fragmented spatial distribution of RTBV local populations in the three countries. Because RTBV depends on rice tungro spherical virus (RTSV) for transmission, the population dynamics of both tungro viruses were then examined at the endemic and outbreak sites within the Philippines. The RTBV genotypes and the coat protein RTSV genotypes were used as indicators for virus diversity. A shift in population structure of both viruses was observed at the outbreak sites with a reduced RTBV but increased RTSV gene diversity
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Background We have previously reported an association between the estrogen receptor 1 (ESR1) gene exon 8 G594A polymorphism and migraine susceptibility in two independent Australian cohorts. In this paper we report results of analysis of two further single nucleotide polymorphisms (SNPs) in the ESR1 gene in the same study group, the T/C Pvu II SNP in intron 1 and the C325G SNP in exon 4, as well as results of linkage disequilibrium (LD) analysis on these markers. Methods We investigated these variants by case-control association analysis in a cohort of 240 migraineurs and 240 matched controls. The SNPs were genotyped using specific restriction enzyme assays. Results were analysed using contingency table methods incorporating the chi-squared statistic. LD results are presented as D' statistics with associated P values. Results We found no evidence for association of the Pvu II T/C polymorphism and the C325G polymorphism and migraine susceptibility and no evidence for LD between these two SNPs and the previously implicated exon 8 G594A marker. Conclusion We have found no role for the polymorphisms in intron 1 and exon 4 with migraine susceptibility. To further investigate our previously implicated exon 8 marker, we suggest the need for studies with a high density of polymorphisms be undertaken, with particular focus on markers in LD with the exon 8 marker.
Resumo:
Solar keratoses affect approximately 50% of Australian Caucasians aged over 40 y. Solar keratoses can undergo malignant transformation into squamous cell carcinoma followed by possible metastasis and are risk factors for basal cell carcinoma, melanoma, and squamous cell carcinoma. The glutathione-S-transferase genes play a part in detoxification of carcinogens and mutagens, including some produced by ultraviolet radiation. This study examined the role of glutathione-S-transferase M1, T1, P1, and Z1 gene polymorphisms in susceptibility to solar keratoses development. Using DNA samples from volunteers involved in the Nambour Skin Cancer Prevention Trial, allele and genotype frequencies were determined using polymerase chain reaction and restriction enzyme digestion. No significant differences were detected in glutathione-S-transferase P1 and glutathione-S-transferase Z1 allele or genotype frequencies; however, a significant association between glutathione-S-transferase M1 genotypes and solar keratoses development was detected (p=0.003) with null individuals having an approximate 2-fold increase in risk for solar keratoses development (odds ratio: 2.1; confidence interval: 1.3-3.5) and a significantly higher increase in risk in conjunction with high outdoor exposure (odds ratio: 3.4; confidence interval: 1.9-6.3). Also, a difference in glutathione-S-transferase T1 genotype frequencies was detected (p=0.039), although considering that multiple testing was undertaken, this was found not to be significant. Fair skin and inability to tan were found to be highly significant risk factors for solar keratoses development with odds ratios of 18.5 (confidence interval: 5.7-59.9) and 7.4 (confidence interval: 2.6-21.0), respectively. Overall, glutathione-S-transferase M1 conferred a significant increase in risk of solar keratoses development, particularly in the presence of high outdoor exposure and synergistically with known phenotypic risk factors of fair skin and inability to tan.
Resumo:
Background Certain genes from the glutathione S-transferase superfamily have been associated with several cancer types. It was the objective of this study to determine whether alleles of the glutathione S-transferase zeta 1 (GSTZ1) gene are associated with the development of sporadic breast cancer. Methods DNA samples obtained from a Caucasian population affected by breast cancer and a control population, matched for age and ethnicity, were genotyped for a polymorphism of the GSTZ1 gene. After PCR, alleles were identified by restriction enzyme digestion and results analysed by chi-square and CLUMP analysis. Results Chi-squared analysis gave a χ2 value of 4.77 (three degrees of freedom) with P = 0.19, and CLUMP analysis gave a T1 value of 9.02 with P = 0.45 for genotype frequencies and a T1 value of 4.77 with P = 0.19 for allele frequencies. Conclusion Statistical analysis indicates that there is no association of the GSTZ1 variant and hence the gene does not appear to play a significant role in the development of sporadic breast cancer.
Resumo:
Mutation of the BRAF gene is common in thyroid cancer. Follicular variant of papillary thyroid carcinoma is a variant of papillary thyroid carcinoma that has created continuous diagnostic controversies among pathologists. The aims of this study are to (1) investigate whether follicular variant of papillary thyroid carcinoma has a different pattern of BRAF mutation than conventional papillary thyroid carcinoma in a large cohort of patients with typical features of follicular variant of papillary thyroid carcinoma and (2) to study the relationship of clinicopathological features of papillary thyroid carcinomas with BRAF mutation. Tissue blocks from 76 patients with diagnostic features of papillary thyroid carcinomas (40 with conventional type and 36 with follicular variant) were included in the study. From these, DNA was extracted and BRAF V600E mutations were detected by polymerase chain reaction followed by restriction enzyme digestion and sequencing of exon 15. Analysis of the data indicated that BRAF V600E mutation is significantly more common in conventional papillary thyroid carcinoma (58% versus 31%, P = .022). Furthermore, the mutation was often noted in female patients (P = .017), in high-stage cancers (P = .034), and in tumors with mild lymphocytic thyroiditis (P = .006). We concluded that follicular variant of papillary thyroid carcinoma differs from conventional papillary thyroid carcinoma in the rate of BRAF mutation. The results of this study add further information indicating that mutations in BRAF play a role in thyroid cancer development and progression.
Resumo:
Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2’–deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.
Resumo:
Objective Migraine is a highly disabling disease affecting a significant proportion of the Australian population. The Methylenetetrahydrofolate Reductase (MTHFR) C677T variant has been associated with increased levels of homocysteine and risk of migraine with aura (MA). Folic acid, Vitamin B6 and B12 supplementation has been previously shown to reduce increased levels of homocysteine and decrease migraine symptoms. However the influence of dietary folate intake on migraine has been unclear. The aim of the current study was to analyse the association of dietary folate intake in the form of dietary folate equivalent (DFE), folic acid (FA) and total food folate (TFF) on migraine frequency, severity and disability. Methods A cohort of 141 adult females of Caucasian descent with MA was genotyped for the MTHFRC677T variant using restriction enzyme digestion. Dietary folate information was collected from all participants and analysed using the “FoodWorks” 2009 package. Folate consumption was compared to migraine frequency, severity and disability using linear regression. Results A significant inverse relation was observed between DFE [R2= 0.201, P= 0.045, CI (-0.004, -0.001)] and FA [R2= 0.255, P= 0.036, 95% CI (-0.009, -0.002)] consumption and migraine frequency. It was also observed that in individuals with the CC genotype for the MTHFR C677T variant, migraine frequency was significantly linked to FA consumption [R2= 0.077, P= 0.029, CI (-0.009, -0.005)]. Conclusions The results from this study indicate that folate intake in the form of folic acid may influence migraine frequency in female MA sufferers.
Resumo:
The role of the amino and carboxyl-terminal regions of cytosolic serine hydroxymethyltransferase (SHMT) in subunit assembly and catalysis was studied using six amino-terminal (lacking the first 6, 14, 30, 49, 58, and 75 residues) and two carboxyl-terminal (lacking the last 49 and 185 residues) deletion mutants. These mutants were constructed from a full length cDNA clone using restriction enzyme/PCR-based methods and overexpressed in Escherichia coli. The overexpressed proteins, des-(A1-K6)-SHMT and des-(A1- W14)-SHMT were present in the soluble fraction and they were purified to homogeneity. The deletion clones, for des-(A1–V30)-SHMT and des-(A1–L49)-SHMT were expressed at very low levels, whereas des-(A1–R58)-SHMT, des-(A1–G75)-SHMT, des-(Q435–F483)-SHMT and des-(L299-F483)-SHMT mutant proteins were not soluble and formed inclusion bodies. Des-(A1–K6)-SHMT and des-(A1–W14)-SHMT catalyzed both the tetrahydrofolate-dependent and tetrahydrofolate-independent reactions, generating characteristic spectral intermediates with glycine and tetrahydrofolate. The two mutants had similar kinetic parameters to that of the recombinant SHMT (rSHMT). However, at 55 °C, the des-(A1–W14)-SHMT lost almost all the activity within 5 min, while at the same temperature rSHMT and des-(A1–K6)-SHMT retained 85% and 70% activity, respectively. Thermal denaturation studies showed that des-(A1–W14)-SHMT had a lower apparent melting temperature (52°C) compared to rSHMT (56°C) and des-(A1–K6)-SHMT (55 °C), suggesting that N-terminal deletion had resulted in a decrease in the thermal stability of the enzyme. Further, urea induced inactivation of the enzymes revealed that 50% inactivation occurred at a lower urea concentration (1.2 ± 0.1 M) in the case of des-(A1–W14)-SHMT compared to rSHMT (1.8 ±0.1 M) and des-(A1–K6)-SHMT (1.7 ±0.1 M). The apoenzyme of des-(A1- W14)-SHMT was present predominantly in the dimer form, whereas the apoenzymes of rSHMT and des-(A1–K6)-SHMT were a mixture of tetramers (≈75% and ≈65%, respectively) and dimers. While, rSHMT and des-(A1–K6)-SHMT apoenzymes could be reconstituted upon the addition of pyridoxal-5'-phosphate to 96% and 94% enzyme activity, respectively, des-(A1–W14)-SHMT apoenzyme could be reconstituted only upto 22%. The percentage activity regained correlated with the appearance of visible CD at 425 nm and with the amount of enzyme present in the tetrameric form upon reconstitution as monitored by gel filtration. These results demonstrate that, in addition to the cofactor, the N-terminal arm plays an important role in stabilizing the tetrameric structure of SHMT.
Resumo:
The Role Of The Amino And Carboxyl-Terminal Regions Of Cytosolic Serine Hydroxymethyltransferase (SHMT) In Subunit Assembly And Catalysis Was Studied Using Sis Amino-Terminal (Lacking The First 6, 14, 30, 49, 58, And 75 Residues) And Two Carboxyl-Terminal (Lacking The Last 49 And 185 Residues) Deletion Mutants. These Mutants Were Constructed From A Full Length Cdna Clone Using Restriction Enzyme/PCR-Based Methods And Overexpressed In Escherichia Coli. The Overexpressed Proteins, Des-(A1-K6) SHMT And Des-(A1-W14)-SHMT Were Present In The Soluble Fraction And They Were Purified To Homogeneity. The Deletion Clones, For Des-(A1-V30)-SHMT And Des-(A1-L49)-SHMT Were Expressed At Very Low Levels, Whereas Des-(A1-R58)-SHMT, Des-/A1-G75)-SHMT, Des-(Q435-F483)-SHMT And Des-(L299-F483)-SHMT Mutant Proteins Were Not Soluble And Formed Inclusion Bodies. Des-(A1-K6)-SHMT And Des-(A1-W14)-SHMT Catalyzed Both The Tetrahydrofolate-Dependent And Tetrahydrofolate-Independent Reactions, Generating Characteristic Spectral Intermediates With Glycine And Tetrahydrofolate. The Two Mutants Had Similar Kinetic Parameters To That Of The Recombinant SHMT (Rshmt). However, At 55 Degrees C, The Des-(A1-W14)-SHMT Lost Almost All The Activity Within 5 Min, While At The Same Temperature Rshmt And Des-(A1-K6)-SHMT Retained 85% And 70% Activity, Respectively. Thermal Denaturation Studies Showed That Des-(A1-W14)-SHMT Had A Lower Apparent Melting Temperature (52 Degrees C) Compared To Rshmt (56 Degrees C) And Des-(A1-K6)-SHMT (55 Degrees C), Suggesting That N-Terminal Deletion Had Resulted In A Decrease In The Thermal Stability Of The Enzyme. Further Urea Induced Inactivation Of The Enzymes Revealed That 50% Inactivation Occurred At A Lower Urea Concentration (1.2+/-0.1 M) In The Case Of Des-(A1-W14)-SHMT Compared To Rshmt (1.8+/-0.1 M) And Des-(A1 -K6)-SHMT (1.7+/-0.1 M). The Apoenzyme Of Des-/A1-K6)-SHMT Was Present Predominantly In The Dimer Form, Whereas The Apoenzymes Of Rshmt And Des-(A1-K6)-SHMT Were A Mixture Of Tetramers (Approximate To 75% And Approximate To 65%, Respectively) And Dimers. While, Rshmt And Des-(A1-K6)-SHMT Apoenzymes Could Be Reconstituted Upon The Addition Of Pyridoxal-5'-Phosphate To 96% And 94% Enzyme Activity, Respectively Des-(A1-W14)-SHMT Apoenzyme Could Be Reconstituted Only Upto 22%. The Percentage Activity Refined Correlated With The Appearance Of Visible CD At 425 Nm And With The Amount Of Enzyme Present In The Tetrameric Form Upon Reconstitution As Monitored By Gel Filtration. These Results Demonstrate That, In Addition To The Cofactor, The N-Terminal Arm Plays An Important Role In Stabilizing The Tetrameric Structure Of SHMT.
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.