992 resultados para respiratory motion
Resumo:
Respiratory motion is a major source of reduced quality in positron emission tomography (PET). In order to minimize its effects, the use of respiratory synchronized acquisitions, leading to gated frames, has been suggested. Such frames, however, are of low signal-to-noise ratio (SNR) as they contain reduced statistics. Super-resolution (SR) techniques make use of the motion in a sequence of images in order to improve their quality. They aim at enhancing a low-resolution image belonging to a sequence of images representing different views of the same scene. In this work, a maximum a posteriori (MAP) super-resolution algorithm has been implemented and applied to respiratory gated PET images for motion compensation. An edge preserving Huber regularization term was used to ensure convergence. Motion fields were recovered using a B-spline based elastic registration algorithm. The performance of the SR algorithm was evaluated through the use of both simulated and clinical datasets by assessing image SNR, as well as the contrast, position and extent of the different lesions. Results were compared to summing the registered synchronized frames on both simulated and clinical datasets. The super-resolution image had higher SNR (by a factor of over 4 on average) and lesion contrast (by a factor of 2) than the single respiratory synchronized frame using the same reconstruction matrix size. In comparison to the motion corrected or the motion free images a similar SNR was obtained, while improvements of up to 20% in the recovered lesion size and contrast were measured. Finally, the recovered lesion locations on the SR images were systematically closer to the true simulated lesion positions. These observations concerning the SNR, lesion contrast and size were confirmed on two clinical datasets included in the study. In conclusion, the use of SR techniques applied to respiratory motion synchronized images lead to motion compensation combined with improved image SNR and contrast, without any increase in the overall acquisition times.
Resumo:
Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.
Resumo:
Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.
Resumo:
A computational framework for modeling the respiratory motion of lung tumors provides a 4D parametric representation that tracks, analyzes, and models movement to provide more accurate guidance in the planning and delivery of lung tumor radiotherapy.
Resumo:
OBJECTIVE: This work is concerned with the creation of three-dimensional (3D) extended-field-of-view ultrasound from a set of volumes acquired using a mechanically swept 3D probe. 3D volumes of ultrasound data can be registered by attaching a position sensor to the probe; this can be an inconvenience in a clinical setting. A position sensor can also cause some misalignment due to patient movement and respiratory motion. We propose a combination of three-degrees-of-freedom image registration and an unobtrusively integrated inertial sensor for measuring orientation. The aim of this research is to produce a reliable and portable ultrasound system that is able to register 3D volumes quickly, making it suitable for clinical use. METHOD: As part of a feasibility study we recruited 28 pregnant females attending for routine obstetric scans to undergo 3D extended-field-of-view ultrasound. A total of 49 data sets were recorded. Each registered data set was assessed for correct alignment of each volume by two independent observers. RESULTS: In 77-83% of the data sets more than four consecutive volumes registered. The successful registration relies on good overlap between volumes and is adversely affected by advancing gestational age and foetal movement. CONCLUSION: The development of reliable 3D extended-field-of-view ultrasound may help ultrasound practitioners to demonstrate the anatomical relation of pathology and provide a convenient way to store data.
Resumo:
Background and Purpose: To quantify respiratory motion of the vocal cords during normal respiration using 4D-CT. The final goal is to develop a technique for single vocal cord irradiation (SVCI) in early glottic carcinoma. Sparing the non-involved cord and surrounding structures has the potential to preserve voice quality and allow re-irradiation of recurrent and second primary tumors. Material and methods: Four-dimensional CTs of 1 mm slice thickness from 10 early glottic carcinoma patients were acquired. The lateral dimensions of the air gap separating the vocal cords were measured anteriorly, at mid-level and posteriorly at each phase of the 4D-CTs. The corresponding anterior-posterior gaps were similarly measured. Cranio-caudal vocal cords movements during breathing were derived from the shifts of the arythenoids. Results: The population-averaged mean gap size ± the corresponding standard deviation due to breathing (SDB) for the lateral gaps was 5.8 ± 0.7 mm anteriorly, 8.7 ± 0.9 mm at mid-level, and 11.0 ± 1.3 mm posteriorly. Anterior-posterior gap values were 21.7 ± 0.7 mm, while cranio-caudal shift SDB was 0.8 mm. Conclusion: Vocal cords breathing motions were found to be small relative to their separation. Hence, breathing motion does not seem to be a limiting factor for SVCI. © 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.
Resumo:
Purpose Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose. Methods and Materials Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT. Results Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case. Conclusions The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.
Resumo:
Purpose: Respiratory motion causes substantial uncertainty in radiotherapy treatment planning. Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor motion during normal respiration. Treatment margins can be reduced by targeting the motion path of the tumor. The expense and complexity of 4D-CT, however, may be cost-prohibitive at some facilities. We developed an image processing technique to produce images from cine CT that contain significant motion information without 4D-CT. The purpose of this work was to compare cine CT and 4D-CT for the purposes of target delineation and dose calculation, and to explore the role of PET in target delineation of lung cancer. Methods: To determine whether cine CT could substitute 4D-CT for small mobile lung tumors, we compared target volumes delineated by a physician on cine CT and 4D-CT for 27 tumors with intrafractional motion greater than 1 cm. We assessed dose calculation by comparing dose distributions calculated on respiratory-averaged cine CT and respiratory-averaged 4D-CT using the gamma index. A threshold-based PET segmentation model of size, motion, and source-to-background was developed from phantom scans and validated with 24 lung tumors. Finally, feasibility of integrating cine CT and PET for contouring was assessed on a small group of larger tumors. Results: Cine CT to 4D-CT target volume ratios were (1.05±0.14) and (0.97±0.13) for high-contrast and low-contrast tumors respectively which was within intraobserver variation. Dose distributions on cine CT produced good agreement (< 2%/1 mm) with 4D-CT for 71 of 73 patients. The segmentation model fit the phantom data with R2 = 0.96 and produced PET target volumes that matched CT better than 6 published methods (-5.15%). Application of the model to more complex tumors produced mixed results and further research is necessary to adequately integrate PET and cine CT for delineation. Conclusions: Cine CT can be used for target delineation of small mobile lesions with minimal differences to 4D-CT. PET, utilizing the segmentation model, can provide additional contrast. Additional research is required to assess the efficacy of complex tumor delineation with cine CT and PET. Respiratory-averaged cine CT can substitute respiratory-averaged 4D-CT for dose calculation with negligible differences.
Resumo:
BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.
Resumo:
PURPOSE Laser range scanners (LRS) allow performing a surface scan without physical contact with the organ, yielding higher registration accuracy for image-guided surgery (IGS) systems. However, the use of LRS-based registration in laparoscopic liver surgery is still limited because current solutions are composed of expensive and bulky equipment which can hardly be integrated in a surgical scenario. METHODS In this work, we present a novel LRS-based IGS system for laparoscopic liver procedures. A triangulation process is formulated to compute the 3D coordinates of laser points by using the existing IGS system tracking devices. This allows the use of a compact and cost-effective LRS and therefore facilitates the integration into the laparoscopic setup. The 3D laser points are then reconstructed into a surface to register to the preoperative liver model using a multi-level registration process. RESULTS Experimental results show that the proposed system provides submillimeter scanning precision and accuracy comparable to those reported in the literature. Further quantitative analysis shows that the proposed system is able to achieve a patient-to-image registration accuracy, described as target registration error, of [Formula: see text]. CONCLUSIONS We believe that the presented approach will lead to a faster integration of LRS-based registration techniques in the surgical environment. Further studies will focus on optimizing scanning time and on the respiratory motion compensation.
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.
Resumo:
Background: The physical characteristic of protons is that they deliver most of their radiation dose to the target volume and deliver no dose to the normal tissue distal to the tumor. Previously, numerous studies have shown unique advantages of proton therapy over intensity-modulated radiation therapy (IMRT) in conforming dose to the tumor and sparing dose to the surrounding normal tissues and the critical structures in many clinical sites. However, proton therapy is known to be more sensitive to treatment uncertainties such as inter- and intra-fractional variations in patient anatomy. To date, no study has clearly demonstrated the effectiveness of proton therapy compared with the conventional IMRT under the consideration of both respiratory motion and tumor shrinkage in non-small cell lung cancer (NSCLC) patients. Purpose: This thesis investigated two questions for establishing a clinically relevant comparison of the two different modalities (IMRT and proton therapy). The first question was whether or not there are any differences in tumor shrinkage between patients randomized to IMRT versus passively scattered proton therapy (PSPT). Tumor shrinkage is considered a standard measure of radiation therapy response that has been widely used to gauge a short-term progression of radiation therapy. The second question was whether or not there are any differences between the planned dose and 5D dose under the influence of inter- and intra-fractional variations in the patient anatomy for both modalities. Methods: A total of 45 patients (25 IMRT patients and 20 PSPT patients) were used to quantify the tumor shrinkage in terms of the change of the primary gross tumor volume (GTVp). All patients were randomized to receive either IMRT or PSPT for NSCLC. Treatment planning goals were identical for both groups. All patients received 5 to 8 weekly repeated 4-dimensional computed tomography (4DCT) scans during the course of radiation treatments. The original GTVp contours were propagated to T50 of weekly 4DCT images using deformable image registration and their absolute volumes were measured. Statistical analysis was performed to compare the distribution of tumor shrinkage between the two population groups. In order to investigate the difference between the planned dose and the 5D dose with consideration of both breathing motion and anatomical change, we re-calculated new dose distributions at every phase of the breathing cycle for all available weekly 4DCT data sets which resulted 50 to 80 individual dose calculations for each of the 7 patients presented in this thesis. The newly calculated dose distributions were then deformed and accumulated to T50 of the planning 4DCT for comparison with the planned dose distribution. Results: At the end of the treatment, both IMRT and PSPT groups showed mean tumor volume reductions of 23.6% ( 19.2%) and 20.9% ( 17.0 %) respectively. Moreover, the mean difference in tumor shrinkage between two groups is 3% along with the corresponding 95% confidence interval, [-8%, 14%]. The rate of tumor shrinkage was highly correlated with the initial tumor volume size. For the planning dose and 5D dose comparison study, all 7 patients showed a mean difference of 1 % in terms of target coverage for both IMRT and PSPT treatment plans. Conclusions: The results of the tumor shrinkage investigation showed no statistically significant difference in tumor shrinkage between the IMRT and PSPT patients, and the tumor shrinkage between the two modalities is similar based on the 95% confidence interval. From the pilot study of comparing the planned dose with the 5D dose, we found the difference to be only 1%. Overall impression of the two modalities in terms of treatment response as measured by the tumor shrinkage and 5D dose under the influence of anatomical change that were designed under the same protocol (i.e. randomized trial) showed similar result.
Resumo:
DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY by James Leroy Neihart, B.S. APPROVED: ______________________________David Followill, Ph.D. ______________________________Peter Balter, Ph.D. ______________________________Narayan Sahoo, Ph.D. ______________________________Kenneth Hess, Ph.D. ______________________________Paige Summers, M.S. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston andThe University of TexasMD Anderson Cancer CenterGraduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by James Leroy Neihart, B.S. Houston, Texas Date of Graduation August, 2013 Acknowledgments I would like to acknowledge my advisory committee members, chair David Followill, Ph.D., Peter Balter, Ph.D, Narayan Sahoo, Ph.D., Kenneth Hess, Ph.D., Paige Summers M.S. and, for their time and effort contributed to this project. I would additionally like to thank the faculty and staff at the PTC-H and the RPC who assisted in many aspects of this project. Falk Pӧnisch, Ph.D. for his breath hold proton therapy treatment expertise, Matt Palmer and Jaques Bluett for proton dosimetry assistance, Matt Kerr for verification plan assistance, Carrie Amador, Nadia Hernandez, Trang Nguyen, Andrea Molineu, Lynda McDonald for TLD and film dosimetry assistance. Finally, I would like to thank my wife and family for their support and encouragement during my research and studies. Development and implementation of a dynamic heterogeneous proton equivalent anthropomorphic thorax phantom for the assessment of scanned proton beam therapy By: James Leroy Neihart, B.S. Chair of Advisory Committee: David Followill, Ph.D Proton therapy has been gaining ground recently in radiation oncology. To date, the most successful utilization of proton therapy is in head and neck cases as well as prostate cases. These tumor locations do not suffer from the resulting difficulties of treatment delivery as a result of respiratory motion. Lung tumors require either breath hold or motion tracking, neither of which have been assessed with an end-to-end phantom for proton treatments. Currently, the RPC does not have a dynamic thoracic phantom for proton therapy procedure assessment. Additionally, such a phantom could be an excellent means of assessing quality assurance of the procedures of proton therapy centers wishing to participate in clinical trials. An eventual goal of this phantom is to have a means of evaluating and auditing institutions for the ability to start clinical trials utilizing proton therapy procedures for lung cancers. Therefore, the hypothesis of this study is that a dynamic anthropomorphic thoracic phantom can be created to evaluate end-to-end proton therapy treatment procedures for lung cancer to assure agreement between the measured and calculated dose within 5% / 5 mm with a reproducibility of 2%. Multiple materials were assessed for thoracic heterogeneity equivalency. The phantom was designed from the materials found to be in greatest agreement. The phantom was treated in an end-to-end treatment four times, which included simulation, treatment planning and treatment delivery. Each treatment plan was delivered three times to assess reproducibility. The dose measured within the phantom was compared to that of the treatment plan. The hypothesis was fully supported for three of the treatment plans, but failed the reproducibility requirement for the most aggressive treatment plan.
Resumo:
A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.