977 resultados para resistance management
Resumo:
Strategies for delaying pest resistance to genetically modified crops that produce Bacillus thuringiensis (Bt) toxins are based primarily on theoretical models. One key assumption of such models is that genes conferring resistance are rare. Previous estimates for lepidopteran pests targeted by Bt crops seem to meet this assumption. We report here that the estimated frequency of a recessive allele conferring resistance to Bt toxin Cry1Ac was 0.16 (95% confidence interval = 0.05–0.26) in strains of pink bollworm (Pectinophora gossypiella) derived from 10 Arizona cotton fields during 1997. Unexpectedly, the estimated resistance allele frequency did not increase from 1997 to 1999 and Bt cotton remained extremely effective against pink bollworm. These results demonstrate that the assumptions and predictions of resistance management models must be reexamined.
Resumo:
Abstract Resistance in insect pests against the endotoxin of Bacillus thuringiensis (Berliner) (Bt) is a major threat to the usefulness of this biopesticide, both used as traditional formulations and in transgenic crops. A crucial requirement for the development of successful resistance management strategies is a molecular understanding of the nature and inheritance of resistance mechanisms. This information can be used to design management strategies that will delay or counteract Bt resistance. The best known Bt resistance mechanism is inactivation of brush border membrane receptors. This type of resistance has a largely recessive mode of inheritance, which has enabled the design of resistance management approaches involving high dose and refuge strategies. Recent observations suggest that other resistance mechanisms are possible, including a mechanism that sequesters the toxin in the gut lumen through inducible immune reactions. The elevated immune status associated with tolerance to the toxin can be transmitted to subsequent generations by a maternal effect, which has implications for resistance management in the field. The high dose/refuge strategy may not be appropriate for the management of these alternative resistance mechanisms and other strategies have to be developed if inducible dominant resistance or tolerance mechanisms occur frequently in the field.
Resumo:
In response to numerous reports of failures to control insect pests of stored products with phosphine in Vietnam, a national survey for resistance to this key fumigant was undertaken in 2009–2011. Data from a more limited survey undertaken by the authors in 2002 in northern Vietnam are also presented. Samples collected in the 2002 survey (Sitophilus oryzae, n=8; Tribolium castaneum, n=8) were tested using a full dose- response assay, while for the 2009–11 survey, F1 generations were tested for resistance with two discriminating dosages of phosphine to detect frequency of weak and strong resistance phenotypes. Compared with a susceptible reference strain, in 2002, resistance to phosphine was indicated in six T. castaneum samples but only two of S. oryzae. Resistance factor, however, did not exceed 2.8-fold in T. castaneum and 1.7 in S. oryzae indicating relatively low frequency and weak expression of resistance. In 2009–11 survey, 176 samples were collected from a range of food and feed storages along the supply chain and from all major regions of Vietnam (125 sites). Rhyzopertha dominica and S. oryzae were the most common species found infesting stored commodities. Resistance was detected at high frequency in all the species. Weak and strong resistance phenotype frequencies were, respectively: Cryptolestes ferrugineus (37 and 58%, n=19), R. dominica (1.5 and 97%, n=65), S. oryzae (34 and 59%, n=82) and T. castaneum (70 and 30%, n=10). Strong resistance phenotype was detected in all the major regions and all parts of the supply chain but frequency was the highest in central storages and animal feed establishments. The increase in frequency and strength of resistance to phosphine in the eight years between the two surveys has been rapid and dramatic. The survey demonstrates the threat of resistance to grain protection in Vietnam and highlights the need for training of fumigators, and the development and adoption of phosphine resistance management tactics nationally.
Resumo:
Weed management has become increasingly challenging for cotton growers in Australia in the last decade. Glyphosate, the cornerstone of weed management in the industry, is waning in effectiveness as a result of the evolution of resistance in several species. One of these, awnless barnyard grass, is very common in Australian cotton fields, and is a prime example of the new difficulties facing growers in choosing effective and affordable management strategies. RIM (Ryegrass Integrated Management) is a computer-based decision support tool developed for the south-western Australian grains industry. It is commonly used there as a tool for grower engagement in weed management thinking and strategy development. We used RIM as the basis for a new tool that can fulfil the same types of functions for subtropical Australian cotton-grains farming systems. The new tool, BYGUM, provides growers with a robust means to evaluate five-year rotations including testing the economic value of fallows and fallow weed management, winter and summer cropping, cover crops, tillage, different herbicide options, herbicide resistance management, and more. The new model includes several northernregion- specific enhancements: winter and summer fallows, subtropical crop choices, barnyard grass seed bank, competition, and ecology parameters, and more freedom in weed control applications. We anticipate that BYGUM will become a key tool for teaching and driving the changes that will be needed to maintain sound weed management in cotton in the near future.
Resumo:
In Australia, along with many other parts of the world, fumigation with phosphine is a vital component in controlling stored grain insect pests. However, resistance is a factor that may limit the continued efficacy of this fumigant. While strong resistance to phosphine has been identified and characterised, very little information is available on the causes of its development and spread. Data obtained from a unique national resistance monitoring and management program were analysed, using Bayesian hurdle modelling, to determine which factors may be responsible. Fumigation in unsealed storages, combined with a high frequency of weak resistance, were found to be the main criteria that led to the development of strong resistance in Sitophilus oryzae. Independent development, rather than gene flow via migration, appears to be primarily responsible for the geographic incidence of strong resistance to phosphine in S. oryzae. This information can now be utilised to direct resources and education into those areas at high risk and to refine phosphine resistance management strategies.
Resumo:
Diagnosing herbicide-resistant weed populations is the first step for herbicide resistance management. Monitoring the nature, distribution, and abundance of the resistant plants in fields demands efficient and effective screening tests. Different glyphosate resistant populations of Lolium multiflorum (VA) and L. rigidum (C) were used in assays for testing their effectiveness to detect herbicide resistance. According to a Petri dish bioassay 7 days after treatment (DAT), the VA and the C populations were 27 and 31 times more resistant to glyphosate than the susceptible populations, L. multiflorum (SM) and L. rigidum (SR), respectively. On a whole-plant bioassay (21 DAT), the VA and the C populations were 6 and 11 times more resistant to glyphosate than their respective susceptible populations. The susceptible populations accumulated 2.5 and 1.4-fold more shikimic acid 48 hours after treatment (HAT), than the resistant VA and C. Glyphosate gradually inhibited net photosynthesis in all populations but at 48-72 HAT the resistant plants recovered, whereas no recovery was detected in susceptible populations. All assays were capable of detecting the resistant populations and this may be useful for farmers and consultants as an effective tool to reduce the spread of the resistant populations through quicker implementation of alternative weed management practices. However, they differed in time, costs and equipments necessaries for successfully carrying on the tests. Regarding costs, the cheapest ones were Petri dish and whole-plant bioassays, but they are time-consuming methods as the major constraints are the collection of seeds from the field and at least some weeks to evaluate the resistance. The shikimic acid and net photosynthesis assays were the quickest ones but they demand sophisticated equipments which could restrict its use.
Resumo:
Inaccurate species identification confounds insect ecological studies. Examining aspects of Trichogramma ecology pertinent to the novel insect resistance management strategy for future transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA) of Western Australia required accurate differentiation between morphologically similar Trichogramma species. Established molecular diagnostic methods for Trichogramma identification use species-specific sequence difference in the internal transcribed spacer (ITS)-2 chromosomal region; yet, difficulties arise discerning polymerase chain reaction (PCR) fragments of similar base pair length by gel electrophoresis. This necessitates the restriction enzyme digestion of PCR-amplified ITS-2 fragments to readily differentiate Trichogramma australicum Girault and Trichogramma pretiosum Riley. To overcome the time and expense associated with a two-step diagnostic procedure, we developed a “one-step” multiplex PCR technique using species-specific primers designed to the ITS-2 region. This approach allowed for a high-throughput analysis of samples as part of ongoing ecological studies examining Trichogramma biological control potential in the ORIA where these two species occur in sympatry.
Resumo:
Laboratory bioassay studies were conducted in southeast Queensland, Australia,: on the efficacy of Teknar (R), VectoBac (R) 12AS, and Cybate (R) (active ingredient: 1,200 international toxic units Bacillus thuringiensis var, israelensis [Bti]) against 3rd instars of the arbovirus vectors Aedes aegypti. Ae. notoscriptus, Ae. vigilax, and Ae. camptorhynchus. Probit analyses were then used to determine LD,, (median lethal dose), LD95, and lethal dose ratios (LDR). Aedes aegypti and Ae. notoscriptus, both container-habitat species, tolerated the highest Bti concentrations compared with saltmarsh Ae. vigilax and Ae. camptorhynchus. For example, the LDR for Ae. vigilax versus Ae. notoscriptus exposed to Cybate was 0.14 (95% confidence limit [CL] 0.03-0.61). Similarly, the Cybate LDR for Ae. camptorhynchus versus Ae. notoscriptus was 0.22 (95% CL 0.07-0.70). Teknar produced similar results with an LDR of 0.21 (95% CL 0.04-1.10) for Aedes vigilax versus Aedes notoscriptus. Differences in product efficacy were found when tested against the 2 container-breeding species. Cybate was less effective than Teknar with LDRs of 1.55 (95% CL 0.65-3.67) and 1.87 (95% CL 0.68-5.15) for Aedes aegypti and Ae. notoscriptus, respectively. The significant differences in susceptibility between mosquito species and varying efficacy between products highlight the importance of evaluating concentration-response data prior to contracting with distributors of mosquito control products. This information is crucial to resistance management strategies.
Resumo:
Microsatellites were used to analyse 68 collections of Helicoverpa armigera in the Dawson/Callide Valleys in central Queensland. The study aimed to evaluate the genetic structure in this region over a 12-month period (September 2000-August 2001). The results detected genetic shifts in H. armigera collections, with genetic changes occurring month by month. Collections in any month were genetically distant from the preceding month's collections. There was no observed difference between collections of H. armigera from the Biloela region and those found in the Theodore region of central Queensland. The data support the current area-wide management strategies for H. armigera by reinforcing the importance and contribution of local management practices. The study also indicates a need for the continuation of regional or Australia-wide approaches to management of the low levels of immigration that are occurring, and for future high pest pressure years.
Resumo:
From October 2000 to April 2001, insecticide bioassays were conducted in 18 ranches from 10 counties in the states of Mato Grosso and Mato Grosso do Sul, in Central Brazil. Horn flies from wild populations were exposed to diazinon-impregnated filter papers immediately after collection on cattle, and mortality was recorded after 2 h. A high susceptibility to diazinon was observed in all tested populations. The LC50s ranged from 0.15 to 0.64 µg/cm², and resistance ratios were always lower than one (ranging 0.1-0.6). Pyrethroid products, most applied by backpack sprayers, have been used since the horn fly entered the region, about 10 years ago. The high susceptibility observed to diazinon indicates that this insecticide (as probably other organophosphate insecticides) represents an useful tool for horn fly control and resistance management, particularly in pyrethroid-resistant populations.
Resumo:
In order to establish the insecticide susceptibility status for Anopheles darlingi in Colombia, and as part of the National Network on Insecticide Resistance Surveillance, five populations of insects from three Colombian states were evaluated. Standardised WHO and CDC bottle bioassays, in addition to microplate biochemical assays, were conducted. Populations with mortality rates below 80% in the bioassays were considered resistant. All field populations were susceptible to deltamethrin, permethrin, malathion and fenitrothion. Resistance to lambda-cyhalothrin and DDT was detected in the Amé-Beté population using both bioassay methods with mortality rates of 65-75%. Enzyme levels related to insecticide resistance, including mixed function oxidases (MFO), non-specific esterases (NSE), glutathione S-transferases and modified acetylcholinesterase were evaluated in all populations and compared with a susceptible natural strain. Only mosquitoes from Amé-Beté presented significantly increased levels of both MFO and NSE, consistent with the low mortalities found in this population. The continued use of lambda-cyhalothrin for An. darlingi control in this locality has resulted in a natural resistance to this insecticide. In addition, DDT resistance is still present in this population, although this insecticide has not been used in Colombia since 1992. Increased metabolism through MFO and NSE may be involved in cross-resistance between lambda-cyhalothrin and DDT, although kdr-type nerve insensitivity cannot be discarded as a possible hypothesis. Additional research, including development of a kdr specific assay for An. darlingi should be conducted in future studies. Our data demonstrates the urgent need to develop local insecticide resistance management and surveillance programs throughout Colombia.
Resumo:
The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.
Resumo:
The qualitative and quantitative losses caused by stored product insects are of great concern, and since there is only a few active ingredients available for their control it is very important to have a frequent insect resistance monitoring. The objective of this research is to evaluate combination of bioassays and molecular marker techniques to detect insecticide resistance in stored product beetles. The Coleoptera species used for the tests were Sitophilus oryzae (L.) (Curculionidae), Rhyzopertha dominica (F.) (Bostrichidae) and Oryzaephilus surinamensis (L.) (Silvanidae). For the bioassays it was used the impregnated filter paper technique, applying 1 mL of deltamethrin (K-Obiol 25 CE TM) using four concentrations and five replicates, including a control with solvent only. Ten adults of each species were liberated separately on each dish. The mortality was evaluated after 24 h and resistance determined by probit analysis. The samples used for the PCR-RAPD were either in vivo or preserved in 70% ethanol, kept in -18°C freezer. After extraction, quantification and DNA quality analysis, the 25 µL samples had the DNA amplified and tested with six primers. The bioassays showed a crescent mortality proportional to insecticide concentration. The resistance factor for R. dominica, S. zeamais and S. oryzae were: 2,2; 3,2 and 9,2, respectively, compared to the susceptible populations of each species. The PCR-RAPD analysis revealed bands which indicate inter and intraspecific variability in the populations, but it was not possible to correlate them to resistance. The association of bioassay and PCR-RAPD represents a precise and valuable tool for resistance management of stored product insects, but more populations and primers should be tested.
Resumo:
BACKGROUND Methyl benzimidazole carbamate (MBC) fungicides are used to control the oilseed rape pathogen Pyrenopeziza brassicae. Resistance to MBCs has been reported in P. brassicae, but the molecular mechanism(s) associated with reductions in sensitivity have not been verified in this species. Elucidation of the genetic changes responsible for resistance, hypothesised to be target-site mutations in β-tubulin, will enable resistance diagnostics and thereby inform resistance management strategies. RESULTS P. brassicae isolates were classified as sensitive, moderately resistant or resistant to MBCs. Crossing P. brassicae isolates of different MBC sensitivities indicated that resistance was conferred by a single gene. The MBC-target encoding gene β-tubulin was cloned and sequenced. Reduced MBC sensitivity of field isolates correlated with β-tubulin amino acid substitutions L240F and E198A. The highest level of MBC resistance was measured for isolates carrying E198A. Negative cross-resistance between MBCs and the fungicides diethofencarb and zoxamide was only measured in E198A isolates. PCR-RFLP was used to screen isolates for the presence of L240F and E198A. The substitutions E198G and F200Y were also detected in DNA samples from P. brassicae populations after cloning and sequencing of PCR products. The frequencies of L240F and E198A in different P. brassicae populations were quantified by pyrosequencing. There were no differences in the frequencies of these alleles between P. brassicae populations sampled from different locations or after fungicide treatment regimes. CONCLUSIONS The molecular mechanisms affecting sensitivity to MBCs in P. brassicae have been identified. Pyrosequencing assays are a powerful tool for quantifying fungicide-resistant alleles in pathogen populations.
Resumo:
Although various biological aspects of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) have been examined, adult movement and dispersal of this insect pest is not well understood. Release-recapture techniques by using marked insects is a useful approach for dispersal studies; however, the marking technique should not significantly affect insect biology or behavior. Therefore, the effect of different concentrations of oil-soluble dyes (Solvent Blue 35 [C.I. 61554], Sudan Red 7B [C.I. 26050], Sudan Black B [26150], Sudan Orange G [C.I. 11920], and Sudan I 103624 [C.I. 12055]) on development, mortality, and fecundity of S. frugiperda was evaluated. Dyes were added to artificial diet used to feed larvae. Larval and pupal development and mortality, adult longevity, and female fecundity were evaluated. High concentrations (400 and 600 ppm) of all dyes led to longer larval and pupal stages. Adult life span and number of eggs were not affected by the dyes. Sudan Red 7B marked both adults and eggs very well. Solvent Blue 35 marked both adults and eggs, but the blue-marked eggs could not be distinguished from some bluish eggs laid by nonlabeled females. Adults and eggs were not adequately marked by the Sudan Black B, Sudan Orange G, and Sudan I 103624 (a yellow dye).