933 resultados para reproductive seasonality
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
SOUSA,M.B.C. et al. Reproductive Patterns and Birth Seasonality in a South-American Breeding Colony of Common Marmosets, Callithrix jacchus. Primates, v.40, n.2, p. 327-336, Apr. 1999.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
SOUSA,M.B.C. et al. Reproductive Patterns and Birth Seasonality in a South-American Breeding Colony of Common Marmosets, Callithrix jacchus. Primates, v.40, n.2, p. 327-336, Apr. 1999.
Resumo:
SOUSA,M.B.C. et al. Reproductive Patterns and Birth Seasonality in a South-American Breeding Colony of Common Marmosets, Callithrix jacchus. Primates, v.40, n.2, p. 327-336, Apr. 1999.
Resumo:
1 Flowering and fruiting phenologies of a tropical dry forest in Mudumalai, southern India, were studied between April 1988 and August 1990. Two sites, a wetter site I receiving 1100mm and a drier site II receiving 600mm of rainfall annually, are compared. A total of 286 trees from 38 species at site I and 167 trees from 27 species at site II was marked for phenological observations. There were 11 species common to the two sites. Several hypotheses relating to the evolution of reproductive phenology are tested. 2 Frequency of species flowering attained a peak at site I during the dry season but at site II, where soil moisture may be limiting during the dry months, the peak was during the wet season. At both sites a majority of species flushed leaves and flowered simultaneously. Among various guilds, the bird-pollinated guild showed distinct dry season flowering, which may be related to better advertisement of large flowers to pollinators during the leafless dry phase. The wind-pollinated guild flowered mainly during the wet season, when wind speeds are highest and favourable for pollen transport. The insect-pollinated guild showed no seasonality in flowering in site I but a wet season flowering in site II. 3 Fruiting frequency attained a peak in site I during the late wet season extending into the early dry season; a time-lag correlation showed that fruiting followed rainfall with a lag of about two months. Site II showed a similar fruiting pattern but this was not statistically significant. The dispersal guilds (animal, wind, and explosive passively-dispersed) did not show any clear seasonality in fruiting, except for the animal-dispersed guild which showed wet season fruiting in site I. 4 Hurlbert's overlap index was also calculated in order to look at synchrony in flowering and fruiting irrespective of climatic (dry and wet month) seasonality. In general, overlap in flowering and fruiting guilds was high because of seasonal aggregation. Among the exceptions, at site II the wind-pollinated flowering guild did not show significant overlap between species although flowering aggregated in the wet season. This could be due to the need to avoid heterospecific pollen transfer. 5 Rarer species tended to flower earlier in the dry season and this again could be an adaptation to avoid the risk of heterospecific pollen transfer or competition for pollinators. The more abundant species flowered mainly during the wet season. Species which flower earlier have larger flowers and, having invested more energy in flowers, also have shorter flower to fruit durations.
Resumo:
A case study of the reproductive biology of the endemic Hawaiian grouper or hapu’upu’u (Hyporthodus quernus) is presented as a model for comprehensive future studies of economically important epinephelid groupers. Specimens were collected throughout multiple years (1978–81, 1992–93, and 2005–08) from most reefs and banks of the Northwestern Hawaiian Islands. The absence of small males, presence of atretic oocytes and brown bodies in testes of mature males, and both developed ovarian and testicular tissues in the gonads of five transitional fish provided evidence of protogynous hermaphroditism. No small mature males were collected, indicating that Hawaiian grouper are monandrous (all males are sex-changed females). Complementary microscopic criteria also were used to assign reproductive stage and estimate median body sizes (L50) at female sexual maturity and at adult sex change from female to male. The L50 at maturation and at sex change was 580 ±8 (95% confidence interval [CI]) mm total length (TL) and 895 ±20 mm TL, respectively. The adult sex ratio was strongly female biased (6:1). Spawning seasonality was described by using gonadosomatic indices. Females began ripening in the fall and remained ripe through April. A February–June main spawning period that followed peak ripening was deduced from the proportion of females whose ovaries contained hydrated oocytes, postovulatory follicles, or both. Testes weights were not affected by season; average testes weight was only about 0.2% of body weight—an order of magnitude smaller than that for ovaries that peaked at 1–3% of body weight. The species’ reproductive life history is discussed in relation to its management.
Resumo:
The reproductive biology of Yellowfin Tuna (Thunnus albacares) in the western Indian Ocean was investigated from samples collected in 2009 and 2010. In our study, 1012 female Yellowfin Tuna were sampled: 320 fish on board a purse seiner and 692 fish at a Seychelles cannery. We assessed the main biological parameters that describe reproductive potential: maturity, spawning seasonality, fish condition, and fecundity. The length at which 50% of the female Yellowfin Tuna population matures (L50) was estimated at 75 cm in fork length (FL) when the maturity threshold was established at the cortical alveolar stage of oocyte development. To enable comparison with previous studies, L50 also was estimated with maturity set at the vitellogenic stage of oocyte development; this assessment resulted in a higher value of L50 at 102 cm FL. The main spawning season, during which asynchrony in reproductive timing among sizes was observed, was November–February and a second peak occurred in June. Smaller females (<100 cm FL) had shorter spawning periods (December to February) than those (November to February and June) of large individuals, and signs of skip-spawning periods were observed among small females. The Yellowfin Tuna followed a “capital-income” breeder strategy during ovarian development, by mobilizing accumulated energy while using incoming energy from feeding. The mean batch fecundity for females 79–147 cm FL was estimated at 3.1 million oocytes, and the mean relative batch fecundity was 74.4 oocytes per gram of gonad-free weight. Our results, obtained with techniques defined more precisely than techniques used in previous studies in this region, provide an improved understanding of the reproductive cycle of Yellowfin Tuna in the western Indian Ocean.
Resumo:
The reproductive biology of two species of endemic Southern Ocean octopods was investigated around the sub-Antarctic islands of South Georgia and Shag Rocks. The females of both the species produce few, large eggs. This appears to be governed by phylogenetic constraint. No evidence was found for ontogenetic migration or seasonality associated with gonad maturation. Based on oocyte length frequency distributions and observations of oocyte development within the ovary, it is possible that both species could have either a single or multiple-batch spawning strategy. Pareledone turqueti ovaries contained fewer larger oocytes than those of Adefieledone polymorpha, which may help to reduce competition for resources immediately after hatching.
Resumo:
It is becoming increasingly evident that jellyfish (Cnidaria: Scyphozoa) play an important role within marine ecosystems, yet our knowledge of their seasonality and reproductive strategies is far from complete. Here, we explore a number of life history hypotheses for three common, yet poorly understood scyphozoan jellyfish (Rhizostoma octopus; Chrysaora hysoscella; Cyanea capillata) found throughout the Irish and Celtic Seas. Specifically, we tested whether (1) the bell diameter/wet weight of stranded medusae increased over time in a manner that suggested a single synchronised reproductive cohort; or (2) whether the range of sizes/weights remained broad throughout the stranding period suggesting the protracted release of ephyrae over many months. Stranding data were collected at five sites between 2003 and 2006 (n = 431 surveys; n = 2401 jellyfish). The relationship between bell diameter and wet weight was determined for each species (using fresh specimens collected at sea) so that estimates of wet weight could also be made for stranded individuals. For each species, the broad size and weight ranges of stranded jellyfish implied that the release of ephyrae may be protracted (albeit to different extents) in each species, with individuals of all sizes present in the water column during the summer months. For R. octopus, there was a general increase in both mean bell diameter and wet weight from January through to June which was driven by an increase in the variance and overall range of both variables during the summer. Lastly, we provide further evidence that rhizostome jellyfish may over-wintering as pelagic medusa which we hypothesise may enable them to capitalise on prey available earlier in the year.
Resumo:
A relatively large amount of variation occurs in the reproductive ecology of tropical snakes, and this variation is generally regarded as being a consequence of seasonality in climate and prey availability. In some groups, even closely related species may differ in their reproductive ecology; however, in others it seems to be very conservative. Here we explore whether characters related to reproduction are phylogenetically constrained in a monophyletic group of snakes, the subfamily Dipsadinae, which ranges from Mexico to southern South America. We provide original data on reproduction for Leptodeira annulata, Imantodes cenchoa, and three species of Sibynomorphus from southern, southeastern and central Brazil, and data from literature for other species and populations of dipsadines. Follicular cycles were seasonal in Atractus reticulatus, Dipsa, albifrons, Hypsiglena torquata, Leptodeira maculata, L. punctata, Sibynomorphus spp. and Sibon sanniola from areas where climate is seasonal. In contrast, extended or continuous follicular cycles were recorded in Dipsas catesbyi, D. neivai, Imantodes cenchoa, Leptodeira annulata, and Ninia maculata from areas with seasonal and aseasonal climates. Testicular cycles also varied from seasonal (in H. torquiata) to continuous (in Dipsa,5 spp., Leptodeira annulata, L. maculata, N. maculata, and Sibynomorphus spp.). Most dipsadines are small (less than 500 rum SVL), and females attain sexual maturity with similar relative body size than males. Sexual dimorphism occurred in terms of SVL and tail length in most species, and clutch size tended to be small (less than five eggs). Combat behavior occurs in Imantodes cenchoa, which did not show sexual size dimorphism. Reproductive timing, for both females and males, varied among species but in general there were no differences between the tribes of Dipsadinae in most of the reproductive characteristics, such as mean body size, relative size at sexual maturity, sexual size and tail dimorphism, duration of vitellogenesis or egg-carrying in oviducts.
Resumo:
Sexual maturity, temporal reproductive pattern, and recruitment of juveniles were examined for the penaeoid shrimp Artemesia longinaris sampled for five and a half years in a tropical locality off the coast of São Paulo (23 degrees S), Brazil. Monthly samples were taken from January 1998 to June 2003 at depths between 5 and 45 m. Ovarian maturity was used to examine breeding in adult females. Recruitment was defined as the percentage of juveniles of the total number of individuals in each month and season. A total of 10 288 females and 5 551 males were collected. Estimated sizes (carapace length) at the onset of sexual maturity were 11.0 mm and 13.4 mm for males and females, respectively. Over the five and a half years, females with ripe gonads were found in every season, with the highest percentages in summer (January-March). Juvenile shrimps occur-red year-round. These results suggest a continuous reproduction of A. longinaris with temperature acting as an environmental stimulus for the duration of the ovary development cycle. These data and the hypothesis of the intrusion of the South Atlantic Central Water mass, which lowered water temperature and raised plankton production, suggest that the end of spring and the beginning of summer were the principal reproductive months. The classical paradigm of continuous reproduction at lower latitudes, with increased seasonality of breeding period at higher latitudes seems to apply to this species.