977 resultados para renal mesangial cells
Resumo:
High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.
Resumo:
IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012
Resumo:
Glomerular mesangial cells (MC) are renal vascular cells that regulate the surface area of glomerular capillaries and thus, partly control glomerular filtration rate. Clarification of the signal transduction pathways and ionic mechanisms modulating MC tone are critical to understanding the physiology and pathophysiology of these cells, and the integrative role these cells play in fluid and electrolyte homeostasis. The patch clamp technique and an assay of cell concentration were used to electrophysiologically and pharmacologically analyze the ion channels of the plasmalemmal of human glomerular MC maintained in tissue culture. Moreover, the signal transduction pathways modulating channels involved in relaxation were investigated. Three distinct K$\sp+$-selective channels were identified: two low conductance channels (9 and 65pS) maintained MC at rest, while a larger conductance (206pS) K$\sp+$ channel was quiescent at rest. This latter channel was pharmacologically and biophysically similar to the large, Ca$\sp{2+}$-activated K$\sp+$ channel (BK$\rm\sb{Ca}$) identified in smooth muscle. BK$\rm\sb{Ca}$ played an essential role in relaxation of MC. In cell-attached patches, the open probability (P$\rm\sb{o}$) of BK$\rm\sb{Ca}$ increased from a basal level of $<$0.05 to 0.22 in response to AII (100nM)-induced mobilization of cytosolic Ca$\sp{2+}$. Activation in response to contractile signals (membrane depolarization and Ca$\sp{2+}$ mobilization) suggests that BK$\rm\sb{Ca}$ acts as a low gain feedback regulator of contraction. Atrial natriuretic factor (ANF; 1.0$\mu$M) and nitroprusside (NP; 0.1mM), via the second messenger, cGMP, increase the feedback gain of BK$\rm\sb{Ca}$. In cell-attached patches bathed with physiological saline, these agents transiently activated BK$\rm\sb{Ca}$ from a basal $\rm P\sb{o}<0.05$ to peak responses near 0.50. As membrane potential hyperpolarizes towards $\rm E\sb{K}$ (2-3 minutes), BK$\rm\sb{Ca}$ inactivates. Upon depolarizing V$\rm\sb{m}$ with 140 mM KCl, db-cGMP (10$\mu$M) activated BK$\rm\sb{Ca}$ to a sustained P$\rm\sb{o}$ = 0.51. Addition of AII in the presence of cGMP further increased P$\rm\sb{o}$ to 0.82. Activation of BK$\rm\sb{Ca}$ by cGMP occured via an endogenous cGMP-dependent protein kinase (PKG): in excised, inside-out patches, PKG in the presence of Mg-ATP (0.1mM) and cGMP increased P$\rm\sb{o}$ from 0.07 to 0.39. In contrast, neither PKC nor PKA influenced BK$\rm\sb{Ca}$. Endogenous okadaic acid-sensitive protein phosphatase suppressed BK$\rm\sb{Ca}$ activity. Binning the change in P$\rm\sb{o}\ (\Delta P\sb{o}$) of BK$\rm\sb{Ca}$ in response to PKG (n = 69) established two distinct populations of channels: one that responded ($\cong$67%, $\rm\Delta P\sb{o} = 0.45 \pm 0.03$) and one that was unresponsive ($\Delta\rm P\sb{o} = 0.00 \pm 0.01$) to PKG. Activation of BK$\rm\sb{Ca}$ by PKG resulted from a decrease in the Ca$\sp{2+}$- and voltage-activation thresholds independent of sensitivities. In conclusion, mesangial BK$\rm\sb{Ca}$ channels sense both electrical and chemical signals of contraction and act as feedback regulators by repolarizing the plasma membrane. ANF and NO, via cGMP, stimulate endogenous PKG, which subsequently decreases the activation threshold of BK$\rm\sb{Ca}$ to increase the gain of this feedback regulatory signal. ^
Resumo:
Transforming growth factor β2 (TGF-β2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-β2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-β downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-β2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-β2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-β2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-β. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.
Resumo:
Background: Hyperglycaemia is a well recognized pathogenic factor of long term complications in diabetes mellitus. Hyperglycaemia not only generates reactive oxygen species but also attenuates antioxidant mechanisms creating a state of oxidative stress. Methods: Porcine mesangial cells were cultured in high glucose (HG) for ten days to investigate the effects on the antioxidant defences of the cell. Results: Mesangial cells cultured in HG conditions had significantly reduced levels of glutathione (GSH) compared with those grown in normal glucose (NG). The reduced GSH levels were accompanied by decreased gene expression of both subunits of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in de novo synthesis of GSH. Elevated levels of intracellular malondialdehyde (MDA) were found in cells exposed to HG conditions. HG also caused elevated mRNA levels of the antioxidant enzymes CuZn superoxide dismutase (SOD) and MnSOD. These changes were accompanied by increased mRNA levels of extracellular matrix proteins (ECM), fibronectin (FN) and collagen IV (CIV). Addition of antioxidants to high glucose caused a significant reversal of FN and CIV gene expression; alpha-lipoic acid also upregulated gamma-GCS gene expression and restored intracellular GSH and MDA levels. Conclusions: We have demonstrated the existence of glucose induced-oxidative stress in mesangial cells as evidenced by elevated MDA and decreased GSH levels. The decreased levels of GSH are as a result of decreased mRNA expression of gamma-GCS within the cell. Antioxidants caused a significant reversal of FN and CIV gene expression suggesting an aetiological link between oxidative stress and increased ECM protein synthesis.
Resumo:
We describe the activation of Wnt signalling in mesangial cells by CCN2. CCN2 stimulates phosphorylation of LRP6 and GSK-3 beta resulting in accumulation and nuclear localisation of beta-catenin, TCF/LEF activity and expression of Wnt targets. This is coincident with decreased phosphorylation of beta-catenin on Ser 33/37 and increased phosphorylation on Tyr142. DKK-1 and LRP6 siRNA reversed CCN2's effects. Microarray analyses of diabetic patients identified differentially expressed Wnt components. beta-Catenin is increased in type 1 diabetic and UUO mice and in in vitro models of hyperglycaemia and hypertension. These findings suggest that Wnt/CCN2 signalling plays a role in the pathogenesis of diabetic nephropathy. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Erythropoietin (EPO) is the main humoral stimulus of erythropoiesis. In adult mammals, the kidney releases EPO in response to hypoxic stress. Conflicting data have suggested either renal tubular or peritubular cell origins of EPO synthesis in vivo. In situ hybridization studies were performed to define further the kidney cell type(s) capable of increasing EPO gene expression during hypoxic stimulation. EPO gene expression was stimulated in mice exposed to acute hypobaric hypoxia. Kidneys from hypoxic and control normoxic mice were obtained. Six digoxigenin-labelled oligonucleotide probes complementary to EPO exon sequences were utilized for in situ hybridization for EPO messenger RNA. Positive hybridization signals were identified in some proximal tubular cells, confined to the inner third of the renal cortex of hypoxic mouse kidney.
Resumo:
Glycation and/or oxidation of LDL may promote diabetic nephropathy. The mitogen-activated protein kinase (MAPK) cascade, which includes extracellular signal-regulated protein kinases (ERKs), modulates cell function. Therefore, we examined the effects of LDL on ERK phosphorylation in cultured rat mesangial cells. In cells exposed to 100 microg/ml native LDL or LDL modified by glycation, and/or mild or marked (copper-mediated) oxidation, ERK activation peaked at 5 min. Five minutes of exposure to 10-100 microg/ml native or modified LDL produced a concentration-dependent (up to sevenfold) increase in ERK activity. Also, 10 microg/ml native LDL and mildly modified LDL (glycated and/or mildly oxidized) produced significantly greater ERK activation than that induced by copper-oxidized LDL +/- glycation (P <0.05). Pretreatment of cells with Src kinase and MAPK kinase inhibitors blocked ERK activation by 50-80% (P <0.05). Native and mildly modified LDL, which are recognized by the native LDL receptor, induced a transient spike of intracellular calcium. Copper-oxidized (+/- glycation) LDL, recognized by the scavenger receptor, induced a sustained rise in intracellular calcium. The intracellular calcium chelator (EGTA/AM) further increased ERK activation by native and mildly modified LDL (P <0.05). These findings demonstrate that native and modified LDL activate ERKs 1 and 2, an early mitogenic signal, in mesangial cells and provide evidence for a potential link between modified LDL and the development of glomerular injury in diabetes.
Resumo:
Cytosolic phospholipase A2 (cPLA2) is thought to be the rate-limiting enzyme in the arachidonic acid/eicosanoid cascade. The ability of various agonists to increase steady-state cPLA2 mRNA levels has previously been reported. The current study delineates the contributions of transcriptional and post-transcriptional processes to the regulation of cPLA2 gene expression in response to a variety of agonists in cultured rat glomerular mesangial cells. Epidermal growth factor, platelet-derived growth factor, serum and phorbol myristate acetate all increase the half-life of cPLA2 mRNA transcripts, indicating a role for post-transcriptional modulation of gene expression. The presence of three ATTTA motifs in the 3' untranslated region (3'UTR) of the rat cPLA2 cDNA is ascertained. Heterologous expression of chimeric constructs with different 3'UTRs ligated into the 3' end of the luciferase coding region reveals that the presence of the cPLA2 3'UTR results in reduced luciferase activity compared with constructs without the cPLA2 3'UTR. Furthermore, the luciferase activity in the constructs with the cPLA2 3'UTR is increased in response to the same agonists which stabilize endogenous cPLA2 mRNA. A negligible effect of these agonists on transcriptional control of cPLA2 is evident using promoter-reporter constructs expressed in transient and stable transfectants. Taken together, these results indicate predominant post-transcriptional regulation of cPLA2 mRNA levels.