897 resultados para relative positioning
Resumo:
A caracterização da variabilidade espacial dos atributos do solo é indispensável para subsidiar práticas agrícolas de maneira sustentável. A utilização da geoestatística para caracterizar a variabilidade espacial desses atributos, como a resistência mecânica do solo à penetração (RP) e a umidade gravimétrica do solo (UG), é, hoje, prática usual na agricultura de precisão. O resultado da análise geoestatística é dependente da densidade amostral e de outros fatores, como o método de georreferencimento utilizado. Desta forma, o presente trabalho teve como objetivo comparar dois métodos de georreferenciamento para a caracterização da variabilidade espacial da RP e da UG, bem como a correlação espacial dessas variáveis. Foi implantada uma malha amostral de 60 pontos, espaçados em 20 m. Para as medições da RP, utilizou-se de penetrógrafo eletrônico e, para a determinação da UG, utilizou-se de trado holandês (profundidade de 0,0-0,1 m). As amostras foram georreferenciadas, utilizando-se do método de Posicionamento por Ponto Simples (PPS), com de (retirar) receptor GPS de navegação, e Posicionamento Relativo Semicinemático, com receptor GPS geodésico L1. Os resultados indicaram que o georreferenciamento realizado pelo PPS não interferiu na caracterização da variabilidade espacial da RP e da UG, assim como na estrutura espacial da relação dos atributos.
Resumo:
This paper aims to conduct a study to evaluate and measure the possible impact that the unavailability of spare parts can have on customer satisfaction for car dealerships in the post-sales. A theoretical-conceptual review on the subject of satisfaction and loyalty, on the backdrop of the reality of the automobile market, allowed the construction of a research tool dedicated to collect opinions of car owners, to allow an analysis empirical relationship between the availability of parts, repairs or scheduled service possible, and change or stay on the mark on the occasion of change of vehicle. 236 forms were applied to car owners in the city of Natal / RN. The results obtained in this survey allowed the identification of the unavailability of parts as a significant factor, among others, the motivation for the customer to switch brands. Collaterally, we could also conclude that the dynamics of change in marks, whatever its motivation, is reflected in the perceived positions of the different brands as the market share both in strictly quantitative terms and in terms of relative positioning, with significant changes in the ranking of consumer preferences for different brands available
Resumo:
In the absence of the selective availability, which was turned off on May 1, 2000, the ionosphere can be the largest source of error in GPS positioning and navigation. Its effects on GPS observable cause a code delays and phase advances. The magnitude of this error is affected by the local time of the day, season, solar cycle, geographical location of the receiver and Earth's magnetic field. As it is well known, the ionosphere is the main drawback for high accuracy positioning, when using single frequency receivers, either for point positioning or relative positioning of medium and long baselines. The ionosphere effects were investigated in the determination of point positioning and relative positioning using single frequency data. A model represented by a Fourier series type was implemented and the parameters were estimated from data collected at the active stations of RBMC (Brazilian Network for Continuous Monitoring of GPS satellites). The data input were the pseudorange observables filtered by the carrier phase. Quality control was implemented in order to analyse the adjustment and to validate the significance of the estimated parameters. Experiments were carried out in the equatorial region, using data collected from dual frequency receivers. In order to validate the model, the estimated values were compared with ground truth. For point and relative positioning of baselines of approximately 100 km, the values of the discrepancies indicated an error reduction better than 80% and 50% respectively, compared to the processing without the ionospheric model. These results give an indication that more research has to be done in order to provide support to the L1 GPS users in the Equatorial region.
Resumo:
In the past few years the interest is accomplishing a high accuracy positioning increasing. One of the methods that has been applied by the scientific community is the network based on positioning. By using multiple reference station data, it is possible to obtain centimetric positioning in a larger coverage area, in addition to gain in reliability, availability and integrity of the service. Besides, using this concept, it is possible to model the atmospheric effects (troposphere refraction and ionosphere effect). Another important question concerning this topic is related to the transmission of the network corrections to the users. There are some possibilities for this fact and an efficient one is the Virtual Reference Station (VRS) concept. In the VRS concept, a reference station is generated near to the rover receiver (user). This provides a short baseline and the user has the possibility of using a single frequency receiver to accomplish the relative positioning. In order to test this kind of positioning method, a software has been developed at São Paulo State University. In this paper, the methodology applied to generate the VRS data is described and the VRS quality is analyzed by using the Precise Point Positioning (PPP) method.
Resumo:
O Sistema de Posicionamento Global (GPS) transmite seus sinais em duas freqüências, o que permite eliminar matematicamente os efeitos de primeira ordem da ionosfera através da combinação linear ionosphere free. Porém, restam os efeitos de segunda e terceira ordem, os quais podem provocar erros da ordem de centímetros nas medidas GPS. Esses efeitos, geralmente, são negligenciados no processamento dos dados GPS. Os efeitos ionosféricos de primeira, segunda e terceira ordem são diretamente proporcionais ao TEC presente na ionosfera, porém, no caso dos efeitos de segunda e terceira ordem, comparecem também o campo magnético da Terra e a máxima densidade de elétrons, respectivamente. Nesse artigo, os efeitos de segunda e terceira ordem da ionosfera são investigados, sendo que foram levados em consideração no processamento de dados GPS na região brasileira para fins de posicionamento. Serão apresentados os modelos matemáticos associados a esses efeitos, as transformações envolvendo o campo magnético da Terra e a utilização do TEC advindo dos Mapas Globais da Ionosfera ou calculados a partir das observações GPS de pseudodistância. O processamento dos dados GPS foi realizado considerando o método relativo estático e cinemático e o posicionamento por ponto preciso (PPP). Os efeitos de segunda e terceira ordem foram analisados considerando períodos de alta e baixa atividade ionosférica. Os resultados mostraram que a não consideração desses efeitos no posicionamento por ponto preciso e no posicionamento relativo para linhas de base longas pode introduzir variações da ordem de poucos milímetros nas coordenadas das estações, além de variações diurnas em altitude da ordem de centímetros.
Resumo:
In the relative positioning, even considering that part of the errors due to ionosphere is canceled with the double-difference observations, strong ionospheric effects can occur in maximum solar activity period. However, in minimum solar activity period, the ionospheric effects decrease significantly and therefore an improvement of the relative positioning performance takes place. In this paper we aim at showing that improvement for the scientific and GPS community users. So, have been experiments by using GPS data of two stations of the Brazilian Network for Continuous Monitoring of GPS, forming a baseline of 430 km. The processing were use accomplished with interval of two hours, and only L1 carrier data have been used. The analysis of the obtained results has been carried out from the discrepancies between the "true" coordinates and corresponding ones obtained in the processing. In maximum solar activity period the discrepancy value reached 25 m. on the other hand, in minimum solar activity period, the discrepancy value reached 5,5 m. It is important to emphasize that the majority of the discrepancy values didn't exceed 0,50 m, and in some cases only reached 0,10 m. This shows the increase of application possibilities of the relative positioning using single-frequency GPS receivers in minimum solar activity period.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The multipath effect affects the differential and relative positioning, even that one involving short baselines. So it is necessary to detect this effect, check the caused error level, and mainly, its removal. This paper aims at analysing and comparing some useful components in the detection of this effect. These components are the Signal to Noise Ratio (SNR), the values of MP1 and MP2 obtained from the TEQC software that indicates the multipath level in the carriers L1 and L2, the multipath repeatability in consecutive days and the elevation angle and the azimuth of the satellites. For this purpose, an experiment is carried out, comparing such components in the presence and the absence of reflector objects that cause the multipath. Not only there is clear multipath repeatability in the residuals, but it also appears in the measures SNR, MP1 and MP2, reaching up 99% of correlation. For reduction, at least, of the high frequency multipath effect, the Multi-Resolution Analysis using wavelets is applied in the double differences (DD) measures. Some statistical tests were accomplished, which indicate results improvement, and mainly, larger reliability in the solution of the ambiguities, reaching up 49% of improvement concerning the Ratio test without applying the proposed method.
Resumo:
The error associated with the ionosphere depends on Total Electron Content (TEC) of the ionosphere. The geomagnetic field exerts strong influence in the TEC variation, because it controls the movement of the electrons. After solar events the magnetic lines of force can be compressed, characterizing the geomagnetic storm. The aim of this paper is to present to geodesic community the effects of a geomagnetic storm in the relative positioning. The processing of the data was accomplished with an interval of two hours, with a 430 km baseline. The analyze of the obtained results have been carried out from the discrepancies between the true coordinates and corresponding ones obtained in the processing of the baseline. The used data in this paper include the period of 30/03/2001 up to 02/04/2001. In March 31 a strong geomagnetic storm happened. One day after, that it corresponds to main phase of the storm, the values of the discrepancies decreased significantly. For instance, in 01:00-03:00 UT period, the value of the planimetric discrepancy reached 20 m in the storm day. However, in the main phase of the storm, the planimetric discrepancy decreased to 0.1 m.
Resumo:
Nowadays, with the implantation of GNSS (Global Navigation Satellite System) reference station networks, several positioning techniques have been developed and/or improved. Using such kind of network data it is possible to model the GNSS distance dependent errors and to compute correction terms for the network region. Several methods have been developed to formulate the corrections terms from network stations data. A method that has been received a great attention is the Virtual Reference Station (VRS). The idea is that the VRS data resemble as much as possible a real receiver data placed in the same local. Therefore, the user has the possibility of using the VRS as if it were a real reference station in your proximities, and to accomplish the relative positioning with a single frequency receiver. In this paper it is described a different methodology applied to implement the VRS concept, using atmospheric models developed by Brazilian researchers. Besides, experiments for evaluating the quality of generated VRS are presented, showing the efficiency of the proposed method.
Resumo:
The effect of the ionosphere on the signals of Global Navigation Satellite Systems (GNSS), such as the Global Positionig System (GPS) and the proposed European Galileo, is dependent on the ionospheric electron density, given by its Total Electron Content (TEC). Ionospheric time-varying density irregularities may cause scintillations, which are fluctuations in phase and amplitude of the signals. Scintillations occur more often at equatorial and high latitudes. They can degrade navigation and positioning accuracy and may cause loss of signal tracking, disrupting safety-critical applications, such as marine navigation and civil aviation. This paper addresses the results of initial research carried out on two fronts that are relevant to GNSS users if they are to counter ionospheric scintillations, i.e. forecasting and mitigating their effects. On the forecasting front, the dynamics of scintillation occurrence were analysed during the severe ionospheric storm that took place on the evening of 30 October 2003, using data from a network of GPS Ionospheric Scintillation and TEC Monitor (GISTM) receivers set up in Northern Europe. Previous results [1] indicated that GPS scintillations in that region can originate from ionospheric plasma structures from the American sector. In this paper we describe experiments that enabled confirmation of those findings. On the mitigation front we used the variance of the output error of the GPS receiver DLL (Delay Locked Loop) to modify the least squares stochastic model applied by an ordinary receiver to compute position. This error was modelled according to [2], as a function of the S4 amplitude scintillation index measured by the GISTM receivers. An improvement of up to 21% in relative positioning accuracy was achieved with this technnique.
Resumo:
Nowadays, with the expansion of the reference stations networks, several positioning techniques have been developed and/or improved. Among them, the VRS (Virtual Reference Station) concept has been very used. In this paper the goal is to generate VRS data in a modified technique. In the proposed methodology the DD (double difference) ambiguities are not computed. The network correction terms are obtained using only atmospheric (ionospheric and tropospheric) models. In order to carry out the experiments it was used data of five reference stations from the GPS Active Network of West of São Paulo State and an extra station. To evaluate the VRS data quality it was used three different strategies: PPP (Precise Point Positioning) and Relative Positioning in static and kinematic modes, and DGPS (Differential GPS). Furthermore, the VRS data were generated in the position of a real reference station. The results provided by the VRS data agree quite well with those of the real file data.
Resumo:
Low-frequency multipath is still one of the major challenges for high precision GPS relative positioning. In kinematic applications, mainly, due to geometry changes, the low-frequency multipath is difficult to be removed or modeled. Spectral analysis has a powerful technique to analyze this kind of non-stationary signals: the wavelet transform. However, some processes and specific ways of processing are necessary to work together in order to detect and efficiently mitigate low-frequency multipath. In this paper, these processes are discussed. Some experiments were carried out in a kinematic mode with a controlled and known vehicle movement. The data were collected in the presence of a reflector surface placed close to the vehicle to cause, mainly, low-frequency multipath. From theanalyses realized, the results in terms of double difference residuals and statistical tests showed that the proposed methodology is very efficient to detect and mitigate low-frequency multipath effects. © 2008 IEEE.
Resumo:
To ensure high accuracy results from GPS relative positioning, the multipath effects have to be mitigated. Although the careful selection of antenna site and the use of especial antennas and receivers can minimize multipath, it cannot always be eliminated and frequently the residual multipath disturbance remains as the major error in GPS results. The high-frequency multipath from large delays can be attenuated by double difference (DD) denoising methods. But the low-frequency multipath from short delays is very difficult to be reduced or modeled. In this paper, it is proposed a method based on wavelet regression (WR), which can effectively detect and reduce the low-frequency multipath. The wavelet technique is firstly applied to decompose the DD residuals into the low-frequency bias and high-frequency noise components. The extracted bias components by WR are then directly applied to the DD observations to correct them from the trend. The remaining terms, largely characterized by the high-frequency measurement noise, are expected to give the best linear unbiased solutions from a least-squares (LS) adjustment. An experiment was carried out using objects placed close to the receiver antenna to cause, mainly, low-frequency multipath. The data were collected for two days to verify the multipath repeatability. The ground truth coordinates were computed with data collected in the absence of the reflector objects. The coordinates and ambiguity solution were compared with and without the multipath mitigation using WR. After mitigating the multipath, ambiguity resolution became more reliable and the coordinates were more accurate.
Resumo:
Nowadays, L1 SBAS signals can be used in a combined GPS+SBAS data processing. However, such situation restricts the studies over short baselines. Besides of increasing the satellite availability, SBAS satellites orbit configuration is different from that of GPS. In order to analyze how these characteristics can impact GPS positioning in the southeast area of Brazil, experiments involving GPS-only and combined GPS+SBAS data were performed. Solutions using single point and relative positioning were computed to show the impact over satellite geometry, positioning accuracy and short baseline ambiguity resolution. Results showed that the inclusion of SBAS satellites can improve the accuracy of positioning. Nevertheless, the bad quality of the data broadcasted by these satellites limits their usage. © Springer-Verlag Berlin Heidelberg 2012.