933 resultados para relative osmotic water volume at incipient plasmolysis
Resumo:
Based on the freshwater and seawater budgets, the mean in/out water fluxes as well as the monthly changes in freshwater content were determined in Lake Manzalah. About 6693 x 10^6m^3 of fresh and brackish water inflow to the lake annually through the main drains discharging into the southeastern basin. Allowances of precipitation (105.7 x 10^6m^3/y) and evaporation (1075 x 10^6m^3/y) yield a net runoff of 5723 x 10^6m^3/y. The average changes in the freshwater content (dF) of the lake was 547.0 x 10^6m^3 with the maximum i.e. 72.4 x 10^6m^3 in July. Using the quantity of inflowing and outflowing water through Boughaz El-Gamil (Lake-Sea connection), the change in water volume relative to sea level change was 549 x 10^6m^3/y. The sea-level height (dh) induced an average monthly change of 6.5 cm. Using the amount of freshwater discharge as well as the lake volume, the lake water is replaced every 48 days.
Resumo:
Previous work showed that aquaporin 1 (AQP1), AQP4-M23, and AQP5 each has a characteristic CO(2)/NH(3) and CO(2)/H(2)O permeability ratio. The goal of the present study is to characterize AQPs 0-9, which traffic to the plasma membrane when heterologously expressed in Xenopus oocytes. We use video microscopy to compute osmotic water permeability (P(f)) and microelectrodes to record transient changes in surface pH (ΔpH(S)) caused by CO(2) or NH(3) influx. Subtracting respective values for day-matched, H(2)O-injected control oocytes yields the channel-specific values P(f)* and ΔpH(S)*. We find that P(f)* is significantly >0 for all AQPs tested except AQP6. (ΔpH(S)*)(CO(2)) is significantly >0 for AQP0, AQP1, AQP4-M23, AQP5, AQP6, and AQP9. (ΔpH(S)*)(NH(3)) is >0 for AQP1, AQP3, AQP6, AQP7, AQP8, and AQP9. The ratio (ΔpH(S)*)(CO(2))/P(f)* falls in the sequence AQP6 (∞) > AQP5 > AQP4-M23 > AQP0 ≅ AQP1 ≅ AQP9 > others (0). The ratio (ΔpH(S)*)(NH(3))/P(f)* falls in the sequence AQP6 (∞) > AQP3 ≅ AQP7 ≅ AQP8 ≅ AQP9 > AQP1 > others (0). Finally, the ratio (ΔpH(S)*)(CO(2))/(-ΔpH(S)*)(NH(3)) falls in the sequence AQP0 (∞) ≅ AQP4-M23 ≅ AQP5 > AQP6 > AQP1 > AQP9 > AQP3 (0) ≅ AQP7 ≅ AQP8. The ratio (ΔpH(S)*)(CO(2))/(-ΔpH(S)*)(NH(3)) is indeterminate for both AQP2 and AQP4-M1. In summary, we find that mammalian AQPs exhibit a diverse range of selectivities for CO(2) vs. NH(3) vs. H(2)O. As a consequence, by expressing specific combinations of AQPs, cells could exert considerable control over the movements of each of these three substances
Resumo:
It recently was proposed [Loo, D. D. F., Zeuthen, T., Chandy, G. & Wright, E. M. (1996) Proc. Natl. Acad. Sci. USA 93, 13367–13370] that SGLT1, the high affinity intestinal and renal sodium/glucose cotransporter carries water molecules along with the cosubstrates with a strict stoichiometry of two Na+, one glucose, and ≈220 water molecules per transport cycle. Using electrophysiology together with sensitive volumetric measurements, we investigated the nature of the driving force behind the cotransporter-mediated water flux. The osmotic water permeability of oocytes expressing human SGLT1 (Lp ± SE) averaged 3.8 ± 0.3 × 10−4 cm⋅s−1 (n = 15) and addition of 100 μM phlorizin (a specific SGLT1 inhibitor) reduced the permeability to 2.2 ± 0.2 × 10−4 cm⋅s−1 (n = 15), confirming the presence of a significant water permeability closely associated with the cotransporter. Addition of 5 mM α-methyl-glucose (αMG) induced an average inward current of 800 ± 10 nA at −50 mV and a water influx reaching 120 ± 20 pL cm−2 ⋅s−1 within 5–8 min. After rapidly inhibiting the Na+/glucose cotransport with phlorizin, the water flux remained significantly elevated, clearly indicating the presence of a local osmotic gradient (Δπ) estimated at 16 ± 2 mOsm. In short-term experiments, a rapid depolarization from −100 to 0 mV in the presence of αMG decreased the cotransport current by 94% but failed to produce a comparable reduction in the swelling rate. A mathematical model depicting the intracellular accumulation of transported osmolytes can accurately account for these observations. It is concluded that, in SGLT1-expressing oocytes, αMG-dependent water influx is induced by a local osmotic gradient by using both endogenous and SGLT1-dependent water permeability.
Resumo:
Background The degree of volume depletion in severe malaria is currently unknown, although knowledge of fluid compartment volumes can guide therapy. To assist management of severely ill children, and to test the hypothesis that volume changes in fluid compartments reflect disease severity, we measured body compartment volumes in Gabonese children with malaria. Methods and Findings Total body water volume (TBW) and extracellular water volume (ECW) were estimated in children with severe or moderate malaria and in convalescence by tracer dilution with heavy water and bromide, respectively. Intracellular water volume (ICW) was derived from these parameters. Bioelectrical impedance analysis estimates of TBW and ECW were calibrated and bioelectrical impedance analysis measurements were taken daily against dilution methods, until discharge. Sixteen children had severe and 19 moderate malaria. Severe childhood malaria was associated with depletion of TBW (mean [SD] of 37 [33] ml/kg, or 6.7% [6.0%]) relative to measurement at discharge. This is defined as mild dehydration in other conditions. ECW measurements were normal on admission in children with severe malaria and did not rise in the first few days of admission. Volumes in different compartments (TBW, ECW, and ICW) were not related to hyperlactataemia or other clinical and laboratory markers of disease severity. Moderate malaria was not associated with a depletion of TBW. Conclusions Significant hypovolaemia does not exacerbate complications of severe or moderate malaria. As rapid rehydration of children with malaria may have risks, we suggest that fluid replacement regimens should aim to correct fluid losses over 12-24 h.
Resumo:
Dose kernels may be used to calculate dose distributions in radiotherapy (as described by Ahnesjo et al., 1999). Their calculation requires use of Monte Carlo methods, usually by forcing interactions to occur at a point. The Geant4 Monte Carlo toolkit provides a capability to force interactions to occur in a particular volume. We have modified this capability and created a Geant4 application to calculate dose kernels in cartesian, cylindrical, and spherical scoring systems. The simulation considers monoenergetic photons incident at the origin of a 3 m x 3 x 9 3 m water volume. Photons interact via compton, photo-electric, pair production, and rayleigh scattering. By default, Geant4 models photon interactions by sampling a physical interaction length (PIL) for each process. The process returning the smallest PIL is then considered to occur. In order to force the interaction to occur within a given length, L_FIL, we scale each PIL according to the formula: PIL_forced = L_FIL 9 (1 - exp(-PIL/PILo)) where PILo is a constant. This ensures that the process occurs within L_FIL, whilst correctly modelling the relative probability of each process. Dose kernels were produced for an incident photon energy of 0.1, 1.0, and 10.0 MeV. In order to benchmark the code, dose kernels were also calculated using the EGSnrc Edknrc user code. Identical scoring systems were used; namely, the collapsed cone approach of the Edknrc code. Relative dose difference images were then produced. Preliminary results demonstrate the ability of the Geant4 application to reproduce the shape of the dose kernels; median relative dose differences of 12.6, 5.75, and 12.6 % were found for an incident photon energy of 0.1, 1.0, and 10.0 MeV respectively.
Resumo:
Changes in water quality parameters such as pH and salinity can have a significant effect on productivity of aquaculture species. Similarly, relative osmotic pressure influences various physiological processes and regulates expression of a number of osmoregulatory genes. Among those, carbonic anhydrase (CA) plays a key role in systemic acid–base balance and ion regulation. Redclaw crayfish (Cherax quadricarinatus) are unique in their ability to thrive in environments with naturally varied pH levels, suggesting unique adaptation to pH stress. To date, however, no studies have focused on identification and characterisation of CA or other osmoregulatory genes in C. quadricarinatus. Here, we analysed the redclaw gill transcriptome and characterized CA genes along with a number of other key osmoregulatory genes that were identified in the transcriptome. We also examined patterns of gene expression of these CA genes when exposed to three pH treatments. In total, 72,382,710 paired end Illumina reads were assembled into 36,128 contigs with an average length of 800 bp. Approximately 37% of contigs received significant BLAST hits and 22% were assigned gene ontology terms. Three full length CA isoforms; cytoplasmic CA (ChqCAc), glycosyl-phosphatidylinositol-linked CA (ChqCAg), and β-CA (ChqCA-beta) as well as two partial CA gene sequences were identified. Both partial CA genes showed high similarity to ChqCAg and appeared to be duplicated from the ChqCAg. Full length coding sequences of Na+/K+-ATPase, V-type H+-ATPase, sarcoplasmic Ca+-ATPase, arginine kinase, calreticulin and Cl− channel protein 2 were also identified. Only the ChqCAc gene showed significant differences in expression across the three pH treatments. These data provide valuable information on the gill expressed CA genes and their expression patterns in freshwater crayfish. Overall our data suggest an important role for the ChqCAc gene in response to changes in pH and in systemic acid–base balance in freshwater crayfish.
Resumo:
Oil droplets are dispersed in water by an anionic urfactant to form an emulsion. The lubricity of this emulsion in steel/steel interaction is explored in a ball on flat nanotribometer. The droplet size and charge are measured using dynamic light scattering, while the substrate charge density is estimated using the pH titration method. These data are combined to calculate the DLVO forces for the droplets generated for a range of surfactant concentration and two oil to water volume ratios. The droplets have a clear bi-modal size distribution. The study shows that the smaller droplets which experience weak repulsion are situated (at the highest DLVO barrier) much closer to the substrate than thebigger droplets, which experience the same DLVO force, are. We suggest that the smaller droplets thus play a more important role in lubricity than what the bigger droplets do. The largest volume of such small droplets occurs in the 0.5 mM-1 mM range of surfactant concentration and 1% oil to water volume ratio, where the coefficient of friction is also observed to be the least. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
O objetivo do trabalho é analisar a lagoa de Jacarepaguá e a ocupação no seu entorno de forma multitemporal, contribuindo para o melhor entendimento das atuais condições ambientais da Baixada de Jacarepaguá. A metodologia adotada buscou identificar mudanças físicas do meio a partir 1980 através da elaboração, comparação e análise de mapas de ocupação e uso dos solos relativos aos anos de 1984, 1992, 2001 e 2010, e da identificação da qualidade da água da lagoa de Jacarepaguá, das suas condições de profundidade, tamanho do espelho dágua e de sua relação com a população local. Com isso foi possível retratar formas de integração entre os processos naturais e sociais em um dado espaço-tempo assim como estabelecer tendências futuras desse ambiente. Os resultados mostram que de tempos em tempos há uma refuncionalização do espaço, que se reflete não só na conformação dos terrenos marginais alagadiços mas também nas condições físicas da própria lagoa de Jacarepaguá. Seu espelho dágua vem sendo confinado pelas formas de ocupação nas áreas das bacias fluviais e nos seus terrenos marginais (impermeabilização, aterros e obras de drenagem) fazendo com que haja uma estabilidade relativa na sua dimensão areal e também no volume de suas águas. A lagoa apresenta dados históricos de poluição por esgoto doméstico que têm acelerado suas condições naturais de assoreamento e comprometido à qualidade de suas águas. E mesmo havendo projetos e obras de saneamento para o local, verifica-se que tem havido um aumento da poluição da lagoa principalmente na sua porção oeste, conforme o resultado das análises realizadas com os dados temporais disponíveis de DBO, fósforo, Nitrogênio Kj, OD e salinidade. Isto pode ser explicado pela tendência atual da expansão urbana rumo a essa direção. Constatou-se que apesar de, por algum tempo, os tipos de terreno terem condicionado as formas de ocupação, atualmente o processo se inverteu, sendo a ocupação indutora e recondicionante da estruturação do meio. São apresentadas e caracterizadas diversas formas e respectivos tipos de usos do solo na área. Conclui-se que as condições ambientais da lagoa de Jacarepaguá e suas perspectivas futuras dependem atualmente mais da forma com que a sociedade quer e pretende incorpora-la ao seu ambiente do que da dinâmica natural do sistema físico do qual faz parte.
Resumo:
Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery.
Resumo:
Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at − 1 and − 5 cm depth and stream water, and weaker correlations between concentrations at − 20 to − 50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.
Resumo:
Chen LM, Zhao J, Musa-Aziz R, Pelletier MF, Drummond IA, Boron WF. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. Am J Physiol Regul Integr Comp Physiol 299: R1163-R1174, 2010. First published August 25, 2010; doi:10.1152/ajpregu.00319.2010.-The mammalian aquaporins AQP1, AQP4, and AQP5 have been shown to function not only as water channels but also as gas channels. Zebrafish have two genes encoding an AQP1 homologue, aqp1a and aqp1b. In the present study, we cloned the cDNA that encodes the zebrafish protein Aqp1a from the 72-h postfertilization (hpf) embryo of Danio rerio, as well as from the swim bladder of the adult. The deduced amino-acid sequence of aqp1a consists of 260 amino acids and is 59% identical to human AQP1. By analyzing the genomic DNA sequence, we identified four exons in the aqp1a gene. By in situ hybridization, aqp1a is expressed transiently in the developing vasculature and in erythrocytes from 16 to 48 h of development. Later, at 72 hpf, aqp1a is expressed in dermal ionocytes and in the swim bladder. Western blot analysis of adult tissues reveals that Aqp1a is most highly expressed in the eye and swim bladder. Xenopus oocytes expressing aqp1a have a channel-dependent (*) osmotic water permeability (P(f)*) that is indistinguishable from that of human AQP1. On the basis of the magnitude of the transient change in surface pH (Delta pHS) that were recorded as the oocytes were exposed to either CO(2) or NH(3), we conclude that zebrafish Aqp1a is permeable to both CO(2) and NH(3). The ratio (Delta pHS*)CO2/P(f)* is about half that of human AQP1, and the ratio (Delta pHS*)NH3/P(f)* is about one-quarter that of human AQP1. Thus, compared with human AQP1, zebrafish Aqp1a has about twice the selectivity for CO(2) over NH(3).
Resumo:
O presente trabalho teve como objetivos verificar o efeito do número de sementes e do volume de água utilizada no teste de condutividade elétrica (CE) para avaliar o vigor de três lotes de sementes de Dalbergia nigra (jacarandá-da-bahia) e correlacionar esses resultados com os dados de germinação em laboratório e em viveiro. Os testes de germinação em laboratório e viveiro foram conduzidos com quatro repetições de 25 sementes. O teste de CE foi realizado com 25, 50 e 75 sementes embebidas a 75, 100 e 125ml de água, por diferentes períodos. A porcentagem de germinação e de plântulas normais em laboratório, indicaram o lote III como de qualidade inferior aos lotes I e II. A primeira contagem da germinação e o índice de velocidade de germinação em laboratório e a emergência, índice de velocidade de emergência e porcentagem de plântulas normais em viveiro identificaram o lote II como superior ao lote I e o III como inferior. A CE diminui com o aumento do volume de água e aumentou com o período de embebição. A diferenciação dos lotes foi mais eficiente, quando se utilizou 75ml de água deionizada e amostras de 50 sementes com pelo menos 36 horas de embebição, com valores de CE menores nos lotes I e II do que no lote II. Os coeficientes de correlação simples entre a CE e as demais características avaliadas, em laboratório e viveiro, foram elevados e significativos, evidenciando alta associação entre os mesmos. Assim, pode-se recomendar que o teste de CE seja conduzido a 25ºC, com amostras de 50 sementes embebidas em 75ml de água deionizada, por períodos iguais ou superiores a 36 horas de embebição, para determinar a qualidade fisiológica de lotes de sementes de jacarandá-da-bahia.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Populational biology of Imparfinis minutus (Siluriformes, Heptapteridae) in the Ribeirao Grande microbasin, eastern Mantiqueira mountain range, São Paulo State. The aim of the work was to analyze biological aspects and distribution of Imparfinis minutus in the Ribeirao Grande microbasin (22[degree]4708[minute]''S, 45[degree]28[minute]17''W), in eastern Mantiqueira mountain range, from July 2001 to April 2002. Among the 37 species sampled, I. minutus (Siluriformes, Heptapteridae), was distributed from the piedmont to the plains of the Vale do Paraiba. The occurrence of this species was associated with the environments of small water volume, bottom with stones and gravel. The amplitude length of I. minutus was 4.75 to 12.75 cm. The length-weight relationship of the population was estimated at W = 0.0052 L3,13. Analyzing the alometric (Ka) and relative (Kr) condition factors, both indexes presented similar values. The lowest value was obtained in July, increasing gradually in October and January, and peaking in April. The analysis of the gonadossomatic relationship (GSR) of females showed higher values in July and January. The reproductive period of I. minutus occurred on spring/summer (October to January), as suggested by the gonadossomatic relationship and condition factor results. Feeding activity was constant, with fat visceral deposition concentrated in April and July. Imparfinis minutus is an aquatic insectivore opportunist species, consuming Diptera and Trichoptera larvae as secondary items. Most ingested food items were autochthonous resources.