953 resultados para reinforced yield stress


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work the squeeze flow technique was used to evaluate the rheological behavior of cement-based mortars containing macroscopic aggregates up to 1.2 mm. Compositions with different water and air contents were tested at three squeezing rates (0.01, 0.1 and 1 mm/s) 15 and 60 min after mixing. The mortars prepared with low (13 wt.%) and usual water content (15 wt.%) presented opposite behaviors as a function of elapsed time and squeezing speed. The first lost its cohesion with time and required higher loads when squeezed faster, while the latter became stiffer with time and was more difficult to be squeezed slowly as a result of phase segregation. Due to the increase of air content, the effects of this compressible phase became more significant and a more complex behavior was observed. Rheological properties such as elongational viscosity and yield stress were also determined. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanical properties (yield stress, ultimate tensile stress and elongation) of alloy 20Cr32Ni + Nb subject to isochronal aging at temperatures between 670 and 820 degrees C for 200 h were investigated using samples extracted from a centrifugally cast tube. The results confirm the occurrence of embrittlement in the aged samples, with maximum embrittlement observed around 770 degrees C without significant gain in strength. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rheological behavior of milk cream was studied for different fat contents (0.10 to 0.31) and for a wide temperature range (2 and 87C) using a rotational rheometer. Newtonian behavior was observed, except for fat content between 0.20 and 0.31 and temperature between 2 and 33C, where viscoplastic behavior was remarkable. The rheological parameters (Newtonian viscosity, plastic viscosity and yield stress) and density were well correlated to temperature and fat content. Tube friction factor during flow of cream was experimentally obtained at various flow rates, temperatures and tube diameters (86 < Re < 2.3 x 104, 38 < Re(B) < 8.8 x 103, 1.1 x 103 < He < 6.7 x 103). The proposed correlations for density and rheological parameters were applied for the prediction of friction factor for laminar and turbulent flow of cream using well-known equations for Newtonian and viscoplastic flow. The good agreement between experimental and predicted values confirms the reliability of the proposed correlations for describing the flow behavior of cream. PRACTICAL APPLICATIONS This paper presents correlations for the calculation of density and rheological parameters (Newtonian viscosity, Bingham plastic viscosity and yield stress) of milk cream as functions of temperature (2-87C) and fat content (0.10-0.31). Because of the large temperature range, the proposed correlations are useful for process design and optimization in dairy processing. An example of practical application is presented in the text, where the correlations were applied for the prediction of friction factor for laminar and turbulent tube flow of cream using well-known equations for Newtonian and viscoplastic flow, which are summarized in the text. The comparison with experimental data obtained at various flow rates, temperatures and tube diameters showed a good agreement, which confirms the reliability of the proposed correlations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ideal conditions for the operation of tandem cold mills are connected to a set of references generated by models and used by dynamic regulators. Aiming at the optimization of the friction and yield stress coefficients an adaptation algorithm is proposed in this paper. Experimental results obtained from an industrial cold rolling mill are presented. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, a series of two-dimensional plane-strain finite element analyses was conducted to further understand the stress distribution during tensile tests on coated systems. Besides the film and the substrate, the finite element model also considered a number of cracks perpendicular to the film/substrate interface. Different from analyses commonly found in the literature, the mechanical behavior of both film and substrate was considered elastic-perfectly plastic in part of the analyses. Together with the film yield stress and the number of film cracks, other variables that were considered were crack tip geometry, the distance between two consecutive cracks and the presence of an interlayer. The analysis was based on the normal stresses parallel to the loading axis (sigma(xx)), which are responsible for cohesive failures that are observed in the film during this type of test. Results indicated that some configurations studied in this work have significantly reduced the value of sigma(xx) at the film/substrate interface and close to the pre-defined crack tips. Furthermore, in all the cases studied the values of sigma(xx) were systematically larger at the film/substrate interface than at the film surface. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Engineering This investigation examined the rheological (viscosity and yield stress) and material property (density) characteristics of the thickened meal-time and videofluorscopy fluids provided by 10 major metropolitan hospitals. Differences in the thickness of thickened fluids were considered as a source of variability and potential hazard for inter-hospital transfers of dysphagic patients. The results indicated considerable differences in the viscosity, density, and yield stress of both meal-time and videofluoroscopy fluids. In theory, the results suggest that dysphagic patients transferred between hospitals could be placed on inappropriate levels of fluid thickness because of inherent differences in the rheology and material property characteristics of the fluids provided by different hospitals. Slowed improvement or medical complications are potential worst-case scenarios for dysphagic patients if the difference between the thick fluids offered by 2 hospitals are extreme. The investigation outlines the most appropriate way to assess the rheological and material property characteristics of thickened fluids. In addition, it suggests a plan of quality improvement to reduce the variability of the thickness of fluids offered at different hospitals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective rheological assessment of fluids given to dysphagic patients at mealtime and during videofluoroscopy was carried out using a multicenter format. Thin, quarter-thick, half-thick and full-thick fluids were examined for the degree of correlation between mealtime fluids and their allegedly matched videofluoroscopy counterparts. The study was carried out to determine whether perceived subjective differences between mealtime fluids and videofluoroscopy fluids could be quantified using the rheological parameters of viscosity, density, and yield stress. The results showed poor correlation between mealtime fluids and videofluoroscopy fluids over all parameters. In general, the videofluoroscopy fluids were more viscous, more dense, and showed higher yield stress values than their mealtime counterparts. Given these results, it is reasonable to assume that the fluids used during videofluoroscopy do not provide an accurate indication of swallowing ability at mealtime. Therefore, it is suggested that clinicians use objective methods to theologically match videofluoroscopy fluids to mealtime fluids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic/brittle convection system needs to be considered. A particle-in-cell finite element method is demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[1] The physical conditions required to provide for the tectonic stability of cratonic crust and for the relative longevity of deep cratonic lithosphere within a dynamic, convecting mantle are explored through a suite of numerical simulations. The simulations allow chemically distinct continents to reside within the upper thermal boundary layer of a thermally convecting mantle layer. A rheologic formulation, which models both brittle and ductile behavior, is incorporated to allow for plate-like behavior and the associated subduction of oceanic lithosphere. Several mechanisms that may stabilize cratons are considered. The two most often invoked mechanisms, chemical buoyancy and/or high viscosity of cratonic root material, are found to be relatively ineffective if cratons come into contact with subduction zones. High root viscosity can provide for stability and longevity but only within a thick root limit in which the thickness of chemically distinct, high-viscosity cratonic lithosphere exceeds the thickness of old oceanic lithosphere by at least a factor of 2. This end-member implies a very thick mechanical lithosphere for cratons. A high brittle yield stress for cratonic lithosphere as a whole, relative to oceanic lithosphere, is found to be an effective and robust means for providing stability and lithospheric longevity. This mode does not require exceedingly deep strength within cratons. A high yield stress for only the crustal or mantle component of the cratonic lithosphere is found to be less effective as detachment zones can then form at the crust-mantle interface which decreases the longevity potential of cratonic roots. The degree of yield stress variations between cratonic and oceanic lithosphere required for stability and longevity can be decreased if cratons are bordered by continental lithosphere that has a relatively low yield stress, i.e., mobile belts. Simulations that combine all the mechanisms can lead to crustal stability and deep root longevity for model cratons over several mantle overturn times, but the dominant stabilizing factor remains a relatively high brittle yield stress for cratonic lithosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. Promising properties have been measured for the following alloys: Cu-0.7wt%Cr-0.3wt%Fe and Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the microstructural characterisation of these alloys and discusses the mechanical and electrical properties of these alloys in terms of their microstructure, particularly the formation of precipitates. These alloys have evinced properties that warrant further investigation. Cost modelling has shown that Cu-0.7wt%Cr-0.3wt%Fe is approximately 25% cheaper to produce than commercial Cu-1%Cr. It has also been shown to be more cost efficient on a yield stress and % IACS per dollar basis. The reason for the cost saving is that the Cu-0.7%Cr-0.3%Fe alloy can be made with low carbon ferro-chrome additions as the source of chromium rather than the more expensive Cu-Cr master-alloy. For applications in which cost is one of the primary materials selection criteria, it is envisaged that there would be numerous applications in both cast and wrought form, where the Cu-0.7%Cr-0.3%Fe alloy would be more suitable than Cu-1%Cr. (C) 2001 Kluwer Academic Publishers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To determine the effect of slurry rheology on industrial grinding performance, 45 surveys were conducted on 16 full-scale grinding mills in five sites. Four operating variables - mill throughput, slurry density, slurry viscosity and feed fines content-were investigated. The rheology of the mill discharge slurries was measured either on-line or off-line, and the data were processed using a standard procedure to obtain a full range of flow curves. Multi-linear regression was employed as a statistical analysis tool to determine whether or not rheological effects exert an influence on industrial grinding, and to assess the influence of the four mill operating conditions on mill performance in terms of the Grinding Index, a criterion describing the overall breakage of particles across the mill. The results show that slurry rheology does influence industrial grinding. The trends of these effects on Grinding Index depend upon the rheological nature of the slurry-whether the slurries are dilatant or pseudoplastic, and whether they exhibit a high or low yield stress. The interpretation of the regression results is discussed, the observed effects are summarised, and the potential for incorporating rheological principles into process control is considered, Guidelines are established to improve industrial grinding operations based on knowledge of the rheological effects. This study confirms some trends in the effect of slurry rheology on grinding reported in the literature, and extends these to a broader understanding of the relationship between slurry properties and rheology, and their effects on industrial milling performance. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines batch-to-batch variability in the production of dietary fluids and videofluoroscopy fluids of a single hospital. The material properties, such as viscosity, yield stress, and density, show significant variations between batches. Also waterbased products (i.e., cordial) provide (a) the most stability from week to week for both dietary and videofluoroscopy fluids and (b) the best dietary and videofluoroscopy fluid matches. The study also highlights the need for further research into how base substances, such as water, juice, and dairy products, react with different thickeners and with barium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study is focused on the establishment of relationships between the injection moulding processing conditions, the applied thermomechanical environment (TME) and the tensile properties of talc-filled polypropylene,adopting a new extended concept of thermomechanical indices (TMI). In this approach, TMI are calculated from computational simulations of the moulding process that characterise the TME during processing, which are then related to the mechanical properties of the mouldings. In this study, this concept is extended to both the filling and the packing phases, with new TMI defined related to the morphology developed during these phases. A design of experiments approach based on Taguchi orthogonal arrays was adopted to vary the injection moulding parameters (injection flow rate, injection temperature, mould wall temperature and holding pressure), and thus, the TME. Results from analysis of variance for injection-moulded tensile specimens have shown that among the considered processing conditions, the flow rate is the most significant parameter for the Young’s modulus; the flow rate and melt temperature are the most significant for the strain at break; and the holding pressure and flow rate are the most significant for the stress at yield. The yield stress and Young’s modulus were found to be governed mostly by the thermostress index (TSI, related to the orientation of the skin layer), whilst the strain at break depends on both the TSI and the cooling index (CI, associated to the crystallinity degree of the core region). The proposed TMI approach provides predictive capabilities of the mechanical response of injection-moulded components, which is a valuable input during their design stage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the coupled effect of temperature and silica fume addition on rheological, mechanical behaviour and porosity of grouts based on CEMI 42.5R, proportioned with a polycarboxylate-based high range water reducer. Preliminary tests were conducted to focus on the grout best able to fill a fibrous network since the goal of this study was to develop an optimized grout able to be injected in a mat of steel fibers for concrete strengthening. The grout composition was developed based on criteria for fresh state and hardened state properties. For a CEMI 42.5R based grout different high range water reducer dosages (0%, 0.2%, 0.4%, 0.5%, 0.7%) and silica fume (SF) dosages (0%, 2%, 4%) were tested (as replacement of cement by mass). Rheological measurements were used to investigate the effect of polycarboxylates (PCEs) and SF dosage on grout properties, particularly its workability loss, as the mix was to be injected in a matrix of steel fibers for concrete jacketing. The workability behaviour was characterized by the rheological parameters yield stress and plastic viscosity (for different grout temperatures and resting times), as well as the procedures of mini slump cone and funnel flow time. Then, further development focused only on the best grout compositions. The cement substitution by 2% of SF exhibited the best overall behaviour and was considered as the most promising compared to the others compositions tested. Concerning the fresh state analysis, a significant workability loss was detected if grout temperature increased above 35 degrees C. Below this temperature the grout presented a self-levelling behaviour and a life time equal to 45 min. In the hardened state, silica fumes increased not only the grout's porosity but also the grout's compressive strength at later ages, since the pozzolanic contribution to the compressive strength does not occur until 28 d and beyond. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work studies the effect of incorporating fine recycled aggregates on the rheology of self-compacting concrete over time (at 15,45 and 90 min). The fine fraction of the natural aggregates was replaced at 0%, 20%, 50% and 100% with recycled sand. The fresh-state properties were studied by empirical tests (slump-flow, J-Ring, L-Box) and fundamental ones in an ICAR rheometer. The mixes with 50% and 100% recycled sand lost their SCC characteristics at 90 min. Contrarily the mix with 20% replacement maintained suitable passing and filling ability. The causes of this trend were an initial increase of plastic viscosity and afterwards an increase of yield stress. The compressive strength of the 50% and 100% replacement mixes decreased significantly and that of the 20% replacement mix less than 10%. (C) 2015 Elsevier Ltd. All rights reserved.