21 resultados para regiochemistry
Resumo:
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of linoleic acid to form 13(S) and 9(R) hydroperoxides. The manner in which substrates bind to the lipoxygenase family of enzymes is not known. It is believed fatty acid substrates may bind either with the aliphatic end first or with the carboxylate group facing the interior of the protein. This thesis tested a potential methyl-end first substrate binding mechanism by studying the activity of SBLO-1 to oxygenate immobilized linoleoyl residues attached to an insoluble polymer. Linoleic acid was attached to aminohexyl agarose in the presence of N-(3- dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and Nhydroxysuccinimide (NHS). The concentration of the covalently attached residues was facilitated by enriching linoleic acid with a small amount of the radioactive 14C-isotope. Functionalization yields of 3% available primary amines on the resin were obtained. Enzymatic oxygenation of the linoleoyl-residues was verified using the ferrous oxidation in xylenol orange (FOX) assay. Approximately 30% of the attached linoleoyl moieties were converted to hydroperoxides in the presence of SBLO-1. A disulfide-containing cleavable linker, cystamine, was used as part of an improved method to isolate the product in a facile manner. Cystamine was attached to NHS-activated agarose with approximately 5% overall functionalization yield of available functional groups. 14C-linoleic acid was successfully covalently linked to the cystamine moieties in the presence of EDC and NHS. The FOX assay verified the enzymatic oxygenation of the linoleoyl residues attached to cystamine-derivatized agarose. The isolation of the peroxide product was attempted in a series of extractions in organic solvents. The product was analyzed using GC/MS which did not show a new peak indicative of product. Further work is needed to successfully analyze the stereoand regiochemistry of the oxygenated product. The presence of the peroxides in this study indicated the linoleoyl residues behave as substrates of SBLO-1. It is unknown how bulky substrates bind to the active site; however, it is difficult to rationalize a carboxylate group-first binding mode. Discovery of the 13(S)-hydroperoxide product on the linoleoyl-agarose would support the claim of a potential methyl-end first binding mechanism.
Resumo:
The 1,3-dipolar cycloaddition between glycine-derived azlactones with maleimides is efficiently catalyzed by the dimeric chiral complex [(Sa)-Binap·AuTFA]2. The alanine-derived oxazolone only reacts with tert-butyl acrylate giving anomalous regiochemistry, which is explained and supported by Natural Resonance Theory and Nucleus Independent Chemical Shifts calculations. The origin of the high enantiodiscrimination observed with maleimides and tert-butyl acrylate is analyzed using DFT computed at M06/Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF) level. Several applications of these cycloadducts in the synthesis of new proline derivatives with a 2,5-trans-arrangement and in the preparation of complex fused polycyclic molecules are described.
Resumo:
The mechanism of aliphatic hydroxylation by cytochromes P450 has been the subject of intense debate with several proposed mechanistic alternatives. Various cyclopropyl containing compounds (radical clocks), which can produce both unrearranged and ring opened products upon oxidation, have been key tools in these investigations. In this study, we introduce several cyclopropyl containing fatty acids 1a-4a with which to probe the mechanism of P450s capable of fatty acid hydroxylation. The probes are shown to be capable of distinguishing radical from cationic intermediates due to the rapid equilibration of isomeric cyclopropyl cations. Ring opening of a radical intermediate in an oxidative transformation is expected to yield a single rearranged alcohol, whereas a cation isomerizes prior to ring opening, leading to two isomeric homoallylic alcohols. Oxidation of these probes by P450(BM3) and P450(Biol) gives results consistent with a radical but not a cationic intermediate in fatty acid hydroxylation by these enzymes. Quantitation of the unrearranged and ring opened products gives remarkably homogeneous rates for oxygen rebound of (2-3) x 10(10) s(-1). The effects of introduction of a cyclopropane ring into a fatty acid upon the regiochemistry of hydroxylation are discussed.
Resumo:
Peptidic Nucleic Acids (PNAs) are achiral, uncharged nucleic add mimetics, with a novel backbone composed of N-(2-aminoethyl)glycine units attached to the DNA bases through carboxymethylene linkers. With the aim of extending and improving upon the molecular recognition properties of PNAs, the aim of this work was to synthesjse PNA building block intermediates containing a series of substituted purine bases for subsequent use in automated PNA synthesis. Four purine bases: 2,6~diaminopurine (D), isoGuanine (isoG), xanthine (X) and hypoxanthine (H) were identified for incorporation into PNAs targeted to DNA, with the promise of increased hybrid stability over extended pH ranges together with improvements over the use of adenine (A) in duplex formation, and cytosine (C) in triplex formation. A reliable, high-yielding synthesis of the PNA backbone component N -('2- butyloxycarbonyl-aminoethyl)glycinate ethyl ester was establishecl. The precursor N~(2-butyloxycarbonyl)amino acetonitrile was crystallised and analysed by X-ray crystallography for the first time. An excellent refinement (R = 0.0276) was attained for this structure, allowing comparisons with known analogues. Although chemical synthesis of pure, fully-characterised PNA monomers was not achieved, chemical synthesis of PNA building blocks composed of diaminopurine, xanthine and hypoxanthine was completely successful. In parallel, a second objective of this work was to characterise and evaluate novel crystalline intermediates, which formed a new series of substituted purine bases, generated by attaching alkyl substituents at the N9 or N7 sites of purine bases. Crystallographic analysis was undertaken to probe the regiochemistry of isomers, and to reveal interesting structural features of the new series of similarly-substituted purine bases. The attainment of the versatile synthetic intermediate 2,6-dichloro~9- (carboxymethyl)purine ethyl ester, and its homologous regioisomers 6-chloro~9- (carboxymethyl)purine ethyl ester and 6-chloro-7-(carboxymethyl)purine ethyl ester, necessitated the use of X-ray crystallographic analysis for unambiguous structural assignment. Successful refinement of the disordered 2,6-diamino-9-(carboxymethyl) purine ethyl ester allowed comparison with the reported structure of the adenine analogue, ethyl adenin-9-yl acetate. Replacement of the chloro moieties with amino, azido and methoxy groups expanded the internal angles at their point of attachment to the purine ring. Crystallographic analysis played a pivotal role towards confirming the identity of the peralkylated hypoxanthine derivative diethyl 6-oxo-6,7-dihydro-3H-purlne~3,7~djacetate, where two ethyl side chains were found to attach at N3 and N7,
Resumo:
Hydroalumination of thioacetylenes using DIBAL-H and lithium di-(isobutyl)-n-(butyl)-aluminate hydride (Zweifel's reagent), followed by addition of water, furnished exclusively the (Z)- and (E)-vinyl sulfides, respectively. The regio- and stereochemistry of the intermediates generated, (Z)- and (E)-phenylthio vinyl alanates, were determined by capture with iodine, which afforded the corresponding (E)- and (Z)-1-iodo-1-phenylthio-2-organoyl ethenes. Reactions of the (E)-iodo(thio)ketene acetals with n-BuLi followed by addition of hexanal afforded the (Z)-phenylthio allylic alcohol, while the (Z)-iodo(thio)ketene acetals under similar reactions conditions gave the (E)-phenylthio allylic alcohol exclusively.
Resumo:
Este trabalho descreve a síntese de novos derivados de coumarinas 3-substituídas por grupos arilo, etenilarilo e etenil-organometálicos, através de novas metodologias via reacções de Heck e de metátese (Grubbs), com controlo da regioquímica e com significativos rendimentos reaccionais. A aplicação destas metodologias permitiu a síntese dos derivados, 3-fenilcoumarina (131), 3-(4-bromofenil)coumarina, (132), 3-(4-iodofenil)coumarina (134), 3-(4-nitrofenil)coumarina (136), 3-(4-etilfenil)coumarina (133), 4-(coumarin-3-il)benzaldeído (135), 3-(4-metoxifenil)coumarina (137), (E)-3-acrilato-[4-(coumarin-3-il)fenil] de metilo (138), 6,7-metilenodioxi-[3-(E)-2'-feniletenil]coumarina (145), 6,7-dimetoxi-[-(E)-2'-feniletenil]coumarina (146), 6,7-dimetoxi-[3-(E)-2'-(6'-nitrofenil)etenil]coumarina (147), 4-[2-(E)-(6,7-dimetoxicoumarin-3-il)etenil]benzaldeído (148) e 6,7-dimetoxi-[3-(E)-2'-ferroceniletenil]coumarina (149), dos quais os últimos nove, são compostos novos, identificados e caracterizados pela primeira vez. A deslocalização do sistema de electrões conjugados, induzida pelos diversos substituintes das coumarinas, foi igualmente avaliada através da espectroscopia de UV/Vis. De referir que parte deste trabalho foi publicado como: "New Methodology for the Synthesis of 3-Substituted Coumarins via Pd-Catalyzed Site-Se/ective Cross-Coupling Reactions”, Sérgio Martins, Paula S. Branco, María C. de la Torre, Miguel A. Sierra e António Pereira, Synlett, 2010 (https://www.thieme-connect.com/ejournals/abstract/ synlett/doi/1 O.1 OS5/s-0030-1259014). ABSTRACT: This work describes the synthesis of new 3-aryl, ethenylaryl and ethenyl-organometallics coumarin derivatives, using a new methodology via Heck and metathesis (Grubbs) reactions, with regiochemistry control and significant reaction yields. The application of these methodologies allowed the synthesis of derivatives, 3-phenylcoumarin (131), 3-(4-bromophenyl)coumarin (132), 3-(4-iodophenyl)coumarin (134), 3-(4-nitrophenyl)coumarin (136), 3-(4-ethylphenyl)coumarin {133), 4-(coumarin-3-yl)benzaldehyde {135), 3-(4-methoxiphenyl)coumarin (137), (E)-ethyl 3-[4(coumarin-3-yl)phenyl]acrylate (138), 6,7-methylenedioxy-[3-(E)-2'-phenylethenyl]coumarin (145), 6,7-dimethoxy-[-(E)-2'-phenylethenyl]coumarin (146), 6,7-dimethoxy-[3-(E)-2'-(6'-nitrophenyl)ethenyl]coumarin (147), 4-[2-(E)-(6,7-dimethoxycoumarin-3-yl)ethenyl]benzaldehyde {148) e 6,7-dimethoxy-[3-(E)-2'-(ferro cene)ethenyl]coumarin (149), the last nine of these are new compounds, identified and characterized for the first time. The delocalization of conjugated -electron system, induced by different substituents of coumarins, was also assessed by spectroscopy UV/Vis. Part of this work was published at: "New Methodology for the Synthesis of 3-Substituted Coumarins via Pd-Catalyzed Site-Selective Cross-Coupling Reactions", Sérgio Martins, Paula S. Branco, María C. de la Torre, Miguel A. Sierra e António Pereira, Synlett, 2010 (https://www.thiemeconnect.com/ejournaIs/abstract/synlett/doi/1O.1 055/s-0030-1259014).