959 resultados para redundancy resolution
Resumo:
Current regulatory requirements on data privacy make it increasingly important for enterprises to be able to verify and audit their compliance with their privacy policies. Traditionally, a privacy policy is written in a natural language. Such policies inherit the potential ambiguity, inconsistency and mis-interpretation of natural text. Hence, formal languages are emerging to allow a precise specification of enforceable privacy policies that can be verified. The EP3P language is one such formal language. An EP3P privacy policy of an enterprise consists of many rules. Given the semantics of the language, there may exist some rules in the ruleset which can never be used, these rules are referred to as redundant rules. Redundancies adversely affect privacy policies in several ways. Firstly, redundant rules reduce the efficiency of operations on privacy policies. Secondly, they may misdirect the policy auditor when determining the outcome of a policy. Therefore, in order to address these deficiencies it is important to identify and resolve redundancies. This thesis introduces the concept of minimal privacy policy - a policy that is free of redundancy. The essential component for maintaining the minimality of privacy policies is to determine the effects of the rules on each other. Hence, redundancy detection and resolution frameworks are proposed. Pair-wise redundancy detection is the central concept in these frameworks and it suggests a pair-wise comparison of the rules in order to detect redundancies. In addition, the thesis introduces a policy management tool that assists policy auditors in performing several operations on an EP3P privacy policy while maintaining its minimality. Formal results comparing alternative notions of redundancy, and how this would affect the tool, are also presented.
Resumo:
Many older adults have difficulty using modern consumer products due to their complexity both in terms of functionality and interface design. It has been observed that older people also have more problems learning new systems. It was hypothesised that designing technological products that are more intuitive for older people to use can solve this problem. An intuitive interface allows a user’s to employ prior knowledge, thus minimizing the learning needed for effective interaction. This paper discusses an experiment investigating the effectiveness of redundancy in interface design. The primary objective of this experiment was to find out if using more than one modality for a product’s interface improves the speed and intuitiveness of interactions for older adults. Preliminary analysis showed strong correlation between technology familiarity and time on tasks, but redundancy in interface design improved speed and accuracy of use only for participants with moderate to high technology familiarity.
Resumo:
In Australia seven schemes (apart from the Superannuation Complaints Tribunal) provide alternative dispute resolution services for complaints brought by consumers against financial services industry members. Recently the Supreme Court of New South Wales held that the decisions of one scheme were amenable to judicial review at the suit of a financial services provider member and the Supreme Court of Victoria has since taken a similar approach. This article examines the juristic basis for such a challenge and contends that judicial review is not available, either at common law or under statutory provisions. This is particularly the case since Financial Industry Complaints Service Ltd v Deakin Financial Services Pty Ltd (2006) 157 FCR 229; 60 ACSR 372 decided that the jurisdiction of a scheme is derived from a contract made with its members. The article goes on to contend that the schemes are required to give procedural fairness and that equitable remedies are available if that duty is breached.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.
Resumo:
With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP. flaAHRManalysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
This paper firstly presents an extended ambiguity resolution model that deals with an ill-posed problem and constraints among the estimated parameters. In the extended model, the regularization criterion is used instead of the traditional least squares in order to estimate the float ambiguities better. The existing models can be derived from the general model. Secondly, the paper examines the existing ambiguity searching methods from four aspects: exclusion of nuisance integer candidates based on the available integer constraints; integer rounding; integer bootstrapping and integer least squares estimations. Finally, this paper systematically addresses the similarities and differences between the generalized TCAR and decorrelation methods from both theoretical and practical aspects.
Resumo:
Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.
Resumo:
Currently the Bachelor of Design is the generic degree offered to the four disciplines of Architecture, Landscape Architecture, Industrial Design, and Interior Design within the School of Design at the Queensland University of Technology. Regardless of discipline, Digital Communication is a core unit taken by the 600 first year students entering the Bachelor of Design degree. Within the design disciplines the communication of the designer's intentions is achieved primarily through the use of graphic images, with written information being considered as supportive or secondary. As such, Digital Communication attempts to educate learners in the fundamentals of this graphic design communication, using a generic digital or software tool. Past iterations of the unit have not acknowledged the subtle difference in design communication of the different design disciplines involved, and has used a single generic software tool. Following a review of the unit in 2008, it was decided that a single generic software tool was no longer entirely sufficient. This decision was based on the recognition that there was an increasing emergence of discipline specific digital tools, and an expressed student desire and apparent aptitude to learn these discipline specific tools. As a result the unit was reconstructed in 2009 to offer both discipline specific and generic software instruction, if elected by the student. This paper, apart from offering the general context and pedagogy of the existing and restructured units, will more importantly offer research data that validates the changes made to the unit. Most significant of this new data is the results of surveys that authenticate actual student aptitude versus desire in learning discipline specific tools. This is done through an exposure of student self efficacy in problem resolution and technological prowess - generally and specifically within the unit. More traditional means of validation is also presented that includes the results of the generic university-wide Learning Experience Survey of the unit, as well as a comparison between the assessment results of the restructured unit versus the previous year.
Resumo:
The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.