832 resultados para recursive filtering
Resumo:
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.
Resumo:
This paper develops a multi-regional general equilibrium model for climate policy analysis based on the latest version of the MIT Emissions Prediction and Policy Analysis (EPPA) model. We develop two versions so that we can solve the model either as a fully inter-temporal optimization problem (forward-looking, perfect foresight) or recursively. The standard EPPA model on which these models are based is solved recursively, and it is necessary to simplify some aspects of it to make inter-temporal solution possible. The forward-looking capability allows one to better address economic and policy issues such as borrowing and banking of GHG allowances, efficiency implications of environmental tax recycling, endogenous depletion of fossil resources, international capital flows, and optimal emissions abatement paths among others. To evaluate the solution approaches, we benchmark each version to the same macroeconomic path, and then compare the behavior of the two versions under a climate policy that restricts greenhouse gas emissions. We find that the energy sector and CO(2) price behavior are similar in both versions (in the recursive version of the model we force the inter-temporal theoretical efficiency result that abatement through time should be allocated such that the CO(2) price rises at the interest rate.) The main difference that arises is that the macroeconomic costs are substantially lower in the forward-looking version of the model, since it allows consumption shifting as an additional avenue of adjustment to the policy. On the other hand, the simplifications required for solving the model as an optimization problem, such as dropping the full vintaging of the capital stock and fewer explicit technological options, likely have effects on the results. Moreover, inter-temporal optimization with perfect foresight poorly represents the real economy where agents face high levels of uncertainty that likely lead to higher costs than if they knew the future with certainty. We conclude that while the forward-looking model has value for some problems, the recursive model produces similar behavior in the energy sector and provides greater flexibility in the details of the system that can be represented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present fundamental knowledge of fluid turbulence has been established primarily from hot- and cold-wire measurements. Unfortunately, however, these measurements necessarily suffer from contamination by noise since no certain method has previously been available to optimally filter noise from the measured signals. This limitation has impeded our progress of understanding turbulence profoundly. We address this limitation by presenting a simple, fast-convergent iterative scheme to digitally filter signals optimally and find Kolmogorov scales definitely. The great efficacy of the scheme is demonstrated by its application to the instantaneous velocity measured in a turbulent jet.
Resumo:
The aim of the present study was to investigate the effect of high-pass filtering on TEOAE obtained from 2-month-old infants as a function of filter cut-off frequency, activity states and pass/fail status of infants. Two experiments were performed. In Experiment 1, 100 2-month-old infants (200 ears) in five activity states (asleep, awake but peaceful, sucking a pacifier, feeding, restless) were tested by use of TEOAE technology. Five different filter conditions were applied to the TEOAE responses post hoc. The filter conditions were set at 781 Hz (default setting), 1.0, 1.2, 1.4 and 1.6 kHz. Results from this experiment showed that TEOAE parameters, such as whole-wave reproducibility (WR) and signal-to-noise ratio (SNR) at 0.8 kHz and 1.6 kHz, changed as a function of the cut-off frequency. The findings suggest that the 1.6 kHz and 1.2 kHz filter conditions are optimal for WR and SNR pass/fail criteria, respectively. Although all infant recordings appeared to benefit from the filtering, infants in the noisy states seemed to benefit the most. In Experiment 2, the high-pass filtering technique was applied to 23 infants (35 ears) who apparently failed the TEOAE tests on initial screening but were subsequently awarded a pass status based on the results from a follow-up auditory brainstem response (ABR) assessment. The findings showed a significant decrease in noise contamination of the TEOAE with a corresponding significant increase in WR. With high-pass filtering at 1.6 kHz, 21/35 ears could be reclassified into the pass category.
Resumo:
A large area colour imager optically addressed is presented. The colour imager consists of a thin wide band gap p-i-n a-SiC:H filtering element deposited on the top of a thick large area a-SiC:H(-p)/a-Si:H(-i)/a-SiC:H(-n) image sensor, which reveals itself an intrinsic colour filter. In order to tune the external applied voltage for full colour discrimination the photocurrent generated by a modulated red light is measured under different optical and electrical bias. Results reveal that the integrated device behaves itself as an imager and a filter giving information not only on the position where the optical image is absorbed but also on it wavelength and intensity. The amplitude and sign of the image signals are electrically tuneable. In a wide range of incident fluxes and under reverse bias, the red and blue image signals are opposite in sign and the green signal is suppressed allowing blue and red colour recognition. The green information is obtained under forward bias, where the blue signal goes down to zero and the red and green remain constant. Combining the information obtained at this two applied voltages a RGB colour image picture can be acquired without the need of the usual colour filters or pixel architecture. A numerical simulation supports the colour filter analysis.
Resumo:
Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.
Resumo:
Frame rate upconversion (FRUC) is an important post-processing technique to enhance the visual quality of low frame rate video. A major, recent advance in this area is FRUC based on trilateral filtering which novelty mainly derives from the combination of an edge-based motion estimation block matching criterion with the trilateral filter. However, there is still room for improvement, notably towards reducing the size of the uncovered regions in the initial estimated frame, this means the estimated frame before trilateral filtering. In this context, proposed is an improved motion estimation block matching criterion where a combined luminance and edge error metric is weighted according to the motion vector components, notably to regularise the motion field. Experimental results confirm that significant improvements are achieved for the final interpolated frames, reaching PSNR gains up to 2.73 dB, on average, regarding recent alternative solutions, for video content with varied motion characteristics.
Resumo:
Wythoff Queens is a classical combinatorial game related to very interesting mathematical results. An amazing one is the fact that the P-positions are given by (⌊├ φn⌋┤┤,├ ├ ⌊φ┤^2 n⌋) and (⌊├ φ^2 n⌋┤┤,├ ├ ⌊φ┤n⌋) where φ=(1+√5)/2. In this paper, we analyze a different version where one player (Left) plays with a chess bishop and the other (Right) plays with a chess knight. The new game (call it Chessfights) lacks a Beatty sequence structure in the P-positions as in Wythoff Queens. However, it is possible to formulate and prove some general results of a general recursive law which is a particular case of a Partizan Subtraction game.
Resumo:
The behavior of robotic manipulators with backlash is analyzed. Based on the pseudo-phase plane two indices are proposed to evaluate the backlash effect upon the robotic system: the root mean square error and the fractal dimension. For the dynamical analysis the noisy signals captured from the system are filtered through wavelets. Several tests are developed that demonstrate the coherence of the results.
Resumo:
In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.
Resumo:
Text classification, information filtering, semi-supervised learning, quality control
Resumo:
Traditionally, it is assumed that the population size of cities in a country follows a Pareto distribution. This assumption is typically supported by nding evidence of Zipf's Law. Recent studies question this nding, highlighting that, while the Pareto distribution may t reasonably well when the data is truncated at the upper tail, i.e. for the largest cities of a country, the log-normal distribution may apply when all cities are considered. Moreover, conclusions may be sensitive to the choice of a particular truncation threshold, a yet overlooked issue in the literature. In this paper, then, we reassess the city size distribution in relation to its sensitivity to the choice of truncation point. In particular, we look at US Census data and apply a recursive-truncation approach to estimate Zipf's Law and a non-parametric alternative test where we consider each possible truncation point of the distribution of all cities. Results con rm the sensitivity of results to the truncation point. Moreover, repeating the analysis over simulated data con rms the di culty of distinguishing a Pareto tail from the tail of a log-normal and, in turn, identifying the city size distribution as a false or a weak Pareto law.