962 resultados para recombinant granulocyte colony stimulating factor
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chemotherapy-induced neutropenia is a major risk factor for infection-related morbidity and mortality and also a significant dose-limiting toxicity in cancer treatment. Patients developing severe (grade 3/4) or febrile neutropenia (FN) during chemotherapy frequently receive dose reductions and/or delays to their chemotherapy. This may impact the success of treatment, particularly when treatment intent is either curative or to prolong survival. In Europe, prophylactic treatment with granulocyte-colony stimulating factors (G-CSFs), such as filgrastim (including approved biosimilars), lenograstim or pegfilgrastim is available to reduce the risk of chemotherapy-induced neutropenia. However, the use of G-CSF prophylactic treatment varies widely in clinical practice, both in the timing of therapy and in the patients to whom it is offered. The need for generally applicable, European-focused guidelines led to the formation of a European Guidelines Working Party by the European Organisation for Research and Treatment of Cancer (EORTC) and the publication in 2006 of guidelines for the use of G-CSF in adult cancer patients at risk of chemotherapy-induced FN. A new systematic literature review has been undertaken to ensure that recommendations are current and provide guidance on clinical practice in Europe. We recommend that patient-related adverse risk factors, such as elderly age (≥65 years) and neutrophil count be evaluated in the overall assessment of FN risk before administering each cycle of chemotherapy. It is important that after a previous episode of FN, patients receive prophylactic administration of G-CSF in subsequent cycles. We provide an expanded list of common chemotherapy regimens considered to have a high (≥20%) or intermediate (10-20%) risk of FN. Prophylactic G-CSF continues to be recommended in patients receiving a chemotherapy regimen with high risk of FN. When using a chemotherapy regimen associated with FN in 10-20% of patients, particular attention should be given to patient-related risk factors that may increase the overall risk of FN. In situations where dose-dense or dose-intense chemotherapy strategies have survival benefits, prophylactic G-CSF support is recommended. Similarly, if reductions in chemotherapy dose intensity or density are known to be associated with a poor prognosis, primary G-CSF prophylaxis may be used to maintain chemotherapy. Clinical evidence shows that filgrastim, lenograstim and pegfilgrastim have clinical efficacy and we recommend the use of any of these agents to prevent FN and FN-related complications where indicated. Filgrastim biosimilars are also approved for use in Europe. While other forms of G-CSF, including biosimilars, are administered by a course of daily injections, pegfilgrastim allows once-per-cycle administration. Choice of formulation remains a matter for individual clinical judgement. Evidence from multiple low level studies derived from audit data and clinical practice suggests that some patients receive suboptimal daily G-CSFs; the use of pegfilgrastim may avoid this problem.
Resumo:
The clinical value of chemotherapy sensitization of acute myeloid leukemia (AML) with G-CSF priming has remained controversial. Cytarabine is a key constituent of remission induction chemotherapy. The effect of G-CSF priming has not been investigated in relationship with variable dose levels of cytarabine. We randomized 917 AML patients to receive G-CSF (456 patients) or no G-CSF (461 patients) at the days of chemotherapy. In the initial part of the study, 406 patients were also randomized between 2 cytarabine regimens comparing conventional-dose (199 patients) versus escalated-dose (207 patients) cytarabine in cycles 1 and 2. We found that patients after induction chemotherapy plus G-CSF had similar overall survival (43% vs 40%, P = .88), event-free survival (37% vs 31%, P = .29), and relapse rates (34% vs 36%, P = .77) at 5 years as those not receiving G-CSF. However, patients treated with the escalated-dose cytarabine regimen benefited from G-CSF priming, with improved event-free survival (P = .01) and overall survival (P = .003), compared with patients without G-CSF undergoing escalated-dose cytarabine treatment. A significant survival advantage of sensitizing AML for chemotherapy with G-CSF was not apparent in the entire study group, but it was seen in patients treated with escalated-dose cytarabine during remission induction. The HOVON-42 study is registered under The Netherlands Trial Registry (www.trialregister.nl) as #NTR230.
Resumo:
Experimental partial hepatectomy of more than 80% of the liver weight bears an increased mortality in rodents, due to impaired hepatic regeneration in small-for-size liver remnants. Granulocyte colony-stimulating factor (G-CSF) promotes progenitor cell expansion and mobilization and also has immunomodulatory properties. The aim of this study was to determine the effect of systemically administered G-CSF on liver regeneration and animal survival in a small-for-size liver remnant mouse model. Mice were preconditioned daily for 5 days with subcutaneous injections of 5 microg G-CSF or aqua ad injectabile. Subsequently, 83% partial hepatectomy was performed by resecting the median, the left, the caudate, and the right inferior hepatic lobes in all animals. Daily sham or G-CSF injection was continued. Survival was significantly better in G-CSF-treated animals (P < 0.0001). At 36 and 48 h after microsurgical hepatic resection, markers of hepatic proliferation (Ki67, BrdU) were elevated in G-CSF-treated mice compared to sham injected control animals (P < 0.0001) and dry liver weight was increased (P < 0.05). G-CSF conditioning might prove to be useful in patients with small-for-size liver remnants after extended hepatic resections due to primary or secondary liver tumors or in the setting of split liver transplantation.
Resumo:
ntense liver regeneration and almost 100% survival follows partial hepatectomy of up to 70% of liver mass in rodents. More extensive resections of 70 to 80% have an increased mortality and partial hepatectomies of >80% constantly lead to acute hepatic failure and death in mice. The aim of the study was to determine the effect of systemically administered granulocyte colony stimulating factor (G-CSF) on animal survival and liver regeneration in a small for size liver remnant mouse model after 83% partial hepatectomy (liver weight <0.8% of mouse body weight). Methods: Male Balb C mice (n=80, 20-24g) were preconditioned daily for five days with 5μg G-CSF subcutaneously or sham injected (aqua ad inj). Subsequently 83% hepatic resection was performed and daily sham or G-CSF injection continued. Survival was determined in both groups (G-CSF n=35; Sham: n=33). In a second series BrdU was injected (50mg/kg Body weight) two hours prior to tissue harvest and animals euthanized 36 and 48 hours after 83% liver resection (n=3 each group). To measure hepatic regeneration the BrdU labeling index and Ki67 expression were determined by immunohistochemistry by two independent observers. Harvested liver tissue was dried to constant weight at 65 deg C for 48 hours. Results: Survival was 0% in the sham group on day 3 postoperatively and significantly better (26.2% on day 7 and thereafter) in the G-CSF group (Log rank test: p<0.0001). Dry liver weight was increased in the G-CSF group (T-test: p<0.05) 36 hours after 83% partial hepatectomy. Ki67 expression was elevated in the G-CSF group at 36 hours (2.8±2.6% (Standard deviation) vs 0.03±0.2%; Rank sum test: p<0.0001) and at 48 hours (45.1±34.6% vs 0.7±1.0%; Rank sum test: p<0.0001) after 83% liver resection. BrdU labeling at 48 hours was 0.1±0.3% in the sham and 35.2±34.2% in the G-CSF group (Rank sum test: p<0.0001) Conclusions: The surgical 83% resection mouse model is suitable to test hepatic supportive regimens in the setting of small for size liver remnants. Administration of G-CSF supports hepatic regeneration after microsurgical 83% partial hepatectomy and leads to improved long-term survival in the mouse. G-CSF might prove to be a clinically valuable supportive substance in small for size liver remnants in humans after major hepatic resections due to primary or secondary liver tumors or in the setting of living related liver donation.
Resumo:
Conditioning with granulocyte colony-stimulating factor (G-CSF) promotes liver regeneration in an experimental small-for-size liver remnant mouse model. The mechanisms involved in this extraordinary G-CSF effect are unknown. The aim of this study was to investigate the influence of G-CSF on the hepatic microvasculature in the regenerating liver. The hepatic sinusoidal microvasculature and microarchitecture of the regenerating liver were evaluated by intravital microscopy in mice. Three experimental groups were compared: (1) unoperated unconditioned animals (control; n = 5), (2) animals conditioned with G-CSF 48 h after 60% partial hepatectomy (G-CSF-PH; n = 6), and (3) animals sham conditioned 48 h after 60% PH (sham-PH; n = 6). PH led to hepatocyte hypertrophy and increased hepatic sinusoidal velocity in the sham-PH and G-CSF-PH groups. Increased sinusoidal diameter and increased hepatic blood flow were observed in the G-CSF-PH group compared to the sham-PH and control groups. Furthermore, there was a strong positive correlation between spleen weight and hepatic sinusoidal diameter in the G-CSF-PH group. The increased hepatic blood flow could explain the observed benefit of G-CSF conditioning during liver regeneration. These results elucidate an unexplored aspect of pharmacological modulation of liver regeneration and motivate further experiments.
Resumo:
BACKGROUND: The efficacy of granulocyte colony-stimulating factor (G-CSF) for coronary collateral growth promotion and thus impending myocardial salvage has not been studied so far, to our best knowledge. METHODS AND RESULTS: In 52 patients with chronic stable coronary artery disease, age 62+/-11 years, the effect on a marker of myocardial infarct size (ECG ST segment elevation) and on quantitative collateral function during a 1-minute coronary balloon occlusion was tested in a randomized, placebo-controlled, double-blind fashion. The study protocol before coronary intervention consisted of occlusive surface and intracoronary lead ECG recording as well as collateral flow index (CFI, no unit) measurement in a stenotic and a > or =1 normal coronary artery before and after a 2-week period with subcutaneous G-CSF (10 microg/kg; n=26) or placebo (n=26). The CFI was determined by simultaneous measurement of mean aortic, distal coronary occlusive, and central venous pressure. The ECG ST segment elevation >0.1 mV disappeared significantly more often in response to G-CSF (11/53 vessels; 21%) than to placebo (0/55 vessels; P=0.0005), and simultaneously, CFI changed from 0.121+/-0.087 at baseline to 0.166+/-0.086 at follow-up in the G-CSF group, and from 0.152+/-0.082 to 0.131+/-0.071 in the placebo group (P<0.0001 for interaction of treatment and time). The absolute change in CFI from baseline to follow-up amounted to +0.049+/-0.062 in the G-CSF group and to -0.010+/-0.060 in the placebo group (P<0.0001). CONCLUSIONS: Subcutaneous G-CSF is efficacious during a short-term protocol in improving signs of myocardial salvage by coronary collateral growth promotion.
Resumo:
Current practice in Switzerland for the mobilization of autologous stem cells in patients with myeloma is combining vinorelbine chemotherapy and granulocyte-colony stimulating factor (G-CSF) cytokine stimulation. We prospectively investigated adding intravenous plerixafor to the vinorelbine/G-CSF combination (VGP), and compared it with vinorelbine/plerixafor (VP) and G-CSF/plerixafor (GP) combinations. In a final cohort (VP-late), plerixafor was given on the first day of CD34 + cells increasing to > 15 000/mL peripheral blood. Four consecutive cohorts of 10 patients with myeloma were studied. We observed that intravenously administered plerixafor can be safely combined with vinorelbine/G-CSF. VGP was superior in mobilizing peripheral stem and progenitor cells compared to the three double combinations (VP, GP and VP-late), and GP mobilized better than VP. Our data indicate that the triple combination of VGP is an efficient strategy to collect autologous CD34 + cells, with G-CSF contributing predominantly in this concept. Plerixafor can be safely added to G-CSF and/or vinorelbine chemotherapy.
Resumo:
Primitive subsets of leukemic cells isolated by using fluorescence-activated cell sorting from patients with newly diagnosed Ph+/BCR–ABL+ chronic myeloid leukemia display an abnormal ability to proliferate in vitro in the absence of added growth factors. We now show from analyses of growth-factor gene expression, protein production, and antibody inhibition studies that this deregulated growth can be explained, at least in part, by a novel differentiation-controlled autocrine mechanism. This mechanism involves the consistent and selective activation of IL-3 and granulocyte colony-stimulating factor (G-CSF) production and a stimulation of STAT5 phosphorylation in CD34+ leukemic cells. When these cells differentiate into CD34− cells in vivo, IL-3 and G-CSF production declines, and the cells concomitantly lose their capacity for autonomous growth in vitro despite their continued expression of BCR–ABL. Based on previous studies of normal cells, excessive exposure of the most primitive chronic myeloid leukemia cells to IL-3 and G-CSF through an autocrine mechanism could explain their paradoxically decreased self-renewal in vitro and slow accumulation in vivo, in spite of an increased cycling activity and selective expansion of later compartments.
Resumo:
Hematopoiesis depends on a pool of quiescent hematopoietic stem/progenitor cells. When exposed to specific cytokines, a portion of these cells enters the cell cycle to generate an amplified progeny. Myeloblastin (MBN) initially was described as involved in proliferation of human leukemia cells. The granulocyte colony-stimulating factor (G-CSF), which stimulates the proliferation of granulocytic precursors, up-regulates MBN expression. Here we show that constitutive overexpression of MBN confers factor-independent growth to murine bone marrow-derived Ba/F3/G-CSFR cells. Our results point to MBN as a G-CSF responsive gene critical to factor-independent growth and indicate that expression of the G-CSF receptor is a prerequisite to this process. A 91-bp MBN promoter region containing PU.1, C/EBP, and c-Myb binding sites is responsive to G-CSF treatment. Although PU.1, C/EBP, and c-Myb transcription factors all were critical for expression of MBN, its up-regulation by G-CSF was associated mainly with PU.1. These findings suggest that MBN is an important target of PU.1 and a key protease for factor-independent growth of hematopoietic cells.
Resumo:
In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.
Resumo:
Neutrophils in tissue culture spontaneously undergo programmed cell death (apoptosis), a process characterized by well-defined morphological alterations affecting the cell nucleus. We found that these morphological changes were preceded by intracellular acidification and that acidification and the apoptotic changes in nuclear morphology were both delayed by granulocyte colony-stimulating factor (G-CSF). Among the agents that defend neutrophils against intracellular acidification is a vacuolar H(+)-ATPase that pumps protons out of the cytosol. When this proton pump was inhibited by bafilomycin A1, G-CSF no longer protected the neutrophils against apoptosis. We conclude that G-CSF delays apoptosis in neutrophils by up-regulating the cells' vacuolar H(+)-ATPase and that intracellular acidification is an early event in the apoptosis program.
Resumo:
Pluripotent hematopoietic stem cells (PHSCs) were highly enriched from mouse bone marrow by counterflow centrifugal elutriation, lineage subtraction, and fluorescence-activated cell sorting based on high c-kit receptor expression (c-kitBR). We used reverse transcriptase polymerase chain reaction to assay the c-kitBR subset and the subsets expressing low (c-kitDULL) and no (c-kitNEG) c-kit receptor for expression of mRNA encoding hematopoietic growth factor receptors and transcription factors. The c-kitBR cells had approximately 3.5-fold more c-kit mRNA than unfractionated bone marrow cells. The c-kitDULL cells had 47-58% of the c-kit mRNA found in c-kitBR cells and the c-kitNEG cells had 4-9% of the c-kit mRNA present in c-kitBR cells. By comparing mRNA levels in c-kitBR cells (enriched for PHSCs) with those of unfractionated bone marrow, we demonstrated that c-kitBR cells contained low or undetectable levels of mRNA for c-fms, granulocyte colony-stimulating factor receptor, interleukin 5 receptor (IL-5R), and IL-7R. These same cells had moderate levels of mRNA for erythropoietin receptor, IL-3R subunits IL-3R alpha (SUT-1), AIC-2A, and AIC-2B, IL-6R and its partner gp-130, and the transcription factor GATA-1 and high levels of mRNA for transcription factors GATA-2, p45 NF-E2, and c-myb. We conclude from these findings that PHSCs are programmed to interact with stem cell factor, IL-3, and IL-6 but not with granulocyte or macrophage colony-stimulating factor. These findings also indicate that GATA-2, p45 NF-E2, and c-myb activities may be involved in PHSC maintenance or proliferation.
Resumo:
The granulocyte colony-stimulating factor (G-CSF) and Fit-3 receptor agonist progenipoietin-1 (ProGP-1) has potent effects on dendritic cell (DC) expansion and may be an alternative to G-CSF for the mobilization of stem cells for allogeneic stem cell transplantation (SCT). We studied the ability of stem cell grafts mobilized with this agent to induce graft-versus-host disease (GVHD) to minor and major histocompatibility antigens in the well-described B6 --> B6D2F1 SCT model. ProGP-1, G-CSIF, or control diluent was administered to donor B6 mice. ProGP-1 expanded all cell lineages in the spleen, and unseparated splenocytes from these animals produced large amounts of interleukin 10 (IL-10) and transforming growth factor beta (TGFbeta) whereas the expression of T-cell adhesion molecules was diminished. Transplantation survival was 0%, 50%, and 90% in recipients of control-, G-CSF-, and ProGP-1-treated allogeneic donor splenocytes, respectively (P < .0001). Donor pretreatment with ProGP-1 allowed a 4-fold escalation in T-cell dose over that possible with G-CSF. Donor CD4 T cells from allogeneic SCT recipients of ProGP-1 splenocytes demonstrated an anergic response to host antigen, and cytokine production (interferon gamma [IFNγ], IL-4, and IL-10) was also reduced while CD8 T-cell cytotoxicity to host antigens remained intact. Neither CD11c(hi) DCs nor CD11c(dim)/B220(hi) DCs from ProGP-1-treated animals conferred protection from GVHD when added to control spleen. Conversely, when equal numbers of purified T cells from control-, G-CSF-, or ProGP-1-treated allogeneic donors were added to allogeneic T-cell-depleted control spleen, survival at day 60 was 0%, 15%, and 90%, respectively (P < .0001). The improved survival in recipients of ProGP-1 T cells was associated with reductions in systemic tumor necrosis factor alpha generation and GVHD of the gastrointestinal tract. We conclude that donor pretreatment with ProGP-1 is superior to G-CSIF for the prevention of GVHD after allogeneic SCT, primarily due to incremental affects on T-cell phenotype and function
Resumo:
Changes in blood dendritic cell (BDC) counts (CD123(hi)BDC and CD11c(+)BDC) and expression of CD62L, CCR7, and CD49d were analyzed in healthy donors, multiple myeloma (MM), and non-Hodgkin lymphoma (NHL) patients, who received granulocyte-colony stimulating factor (G-CSF) containing peripheral blood stem cell (PBSC) mobilization protocols. Low-dose G-CSF in healthy donors (8-10 mug/ kg/d subcutaneously) and high-dose G-CSF in patients (30 mug/kg/d) increased CD123(hi)BDC (2- to 22-fold, mean 3.7 x 10(6)/ L-17.7 x 10(6)/L and 1.9 x 10(6)/L-12.0 x 10(6)/ L) in healthy donors and MM but decreased CD11c(+)BDC (2- to 10-fold, mean 5.7 x 10(6)/L-1.6 x 10(6)/L) in NHL patients, on the day of apheresis, compared with steady state. After apheresis, CD123(hi)BDC counts remained high, whereas low CD11c(+)BDC counts tended to recover in the following 2-5 days. Down-regulation of CD62L and up-regulation of CCR7 on CD123(hi)BDC were found in most healthy donors and MM patients. CD49d expression was unchanged. Thus, PBSC mobilization may change BDC counts by altering molecules necessary for BDC homing from blood into tissues.