993 resultados para reaction pathways
Resumo:
Vacuum-ultraviolet (VUV) irradiation (kexc: 172 ± 12 nm) of polystyrene films in the presence of oxygen produced not only oxidatively functionalized surfaces, but generated also morphological changes. Whereas OH- and C=O-functionalized surfaces might be used for e.g. secondary functionalization, enhanced aggregation or printing, processes leading to morphological changes open new possibilities of microstructurization. Series of experiments made under different experimental conditions brought evidence of two different reaction pathways: introduction of OH- and C=O-groups at the polystyrene pathways is mainly due to the reaction of reactive oxygen species (hydroxyl radicals, atomic oxygen, ozone) produced in the gas phase between the VUV-radiation source and the substrate. However, oxidative fragmentation leading to morphological changes, oxidation products of low molecular weight and eventually to mineralization of the organic substrate is initiated by electronic excitation of the polymer leading to C–C-bond homolysis and to a complex oxidation manifold after trapping of the C-centred radicals by molecular oxygen. The pathways of oxidative functionalization or fragmentation could be differentiated by FTIR-ATR analysis of irradiated polystyrene surfaces before and after washing with acetonitrile and microscopic fluorescence analysis of the surfaces secondarily functionalized with the N,N,N-tridodecyl-triaza-triangulenium (TATA) cation. Ozonization of the polystyrene leads to oxidative functionalization of the polymer surface but cannot initiate the fragmentation of the polymer backbone. Oxidative fragmentation is initiated by electronic excitation of the polymer (contact-mode AFM analysis), and evidence of the generation of intermediate C-centred radicals is given e.g. by experiments in the absence of oxygen leading to cross-linking (solubility effects, optical microscopy, friction-mode AFM) and disproportionation (fluorescence).
Resumo:
Time resolved studies of silylene, SiH2, generated by the 193 nm laser. ash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reactions with methyl-, dimethyl- and trimethyl-silanes in the gas phase. The reactions were studied over the pressure range 3 - 100 Torr with SF6 as bath gas and at five temperatures in the range 300 - 625 K. Only slight pressure dependences were found for SiH2 + MeSiH3 ( 485 and 602 K) and for SiH2 + Me2SiH2 ( 600 K). The high pressure rate constants gave the following Arrhenius parameters: [GRAPHICS] These are consistent with fast, near to collision-controlled, association processes. RRKM modelling calculations are consistent with the observed pressure dependences ( and also the lack of them for SiH2 + Me3SiH). Ab initio calculations at both second order perturbation theory (MP2) and coupled cluster (CCSD(T)) levels, showed the presence of weakly-bound complexes along the reaction pathways. In the case of SiH2 + MeSiH3 two complexes, with different geometries, were obtained consistent with earlier studies of SiH2 + SiH4. These complexes were stabilised by methyl substitution in the substrate silane, but all had exceedingly low barriers to rearrangement to product disilanes. Although methyl groups in the substrate silane enhance the intrinsic SiH2 insertion rates, it is doubtful whether the intermediate complexes have a significant effect on the kinetics. A further calculation on the reaction MeSiH + SiH4 shows that the methyl substitution in the silylene should have a much more significant kinetic effect ( as observed in other studies).
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with oxirane, oxetane, and tetrahydrofuran (THF). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at four or five temperatures in the range 294-605 K. All three reactions showed pressure dependences characteristic of third-body-assisted association reactions with, surprisingly, SiH2 + oxirane showing the least and SiH2 + THF showing the most pressure dependence. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equations where the error limits are single standard deviations: log(k(oxirane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.03 +/- 0.07) + (5.70 +/- 0.51) kJ mol(-1)/RT In 10 log(k(oxetane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.17 +/- 0.11) + (9.04 +/- 0.78) kJ mol(-1)/RT In 10 log(k(THF)(infinity)/cm(3) molecule(-1) s(-1)) = (-10.59 +/- 0.10) + (5.76 +/- 0.65) kJ mol(-1)/RT In 10 Binding-energy values of 77, 97, and 92 kJ mol(-1) have been obtained for the donor-acceptor complexes of SiH2 with oxirane, oxetane, and THF, respectively, by means of quantum chemical (ab initio) calculations carried Out at the G3 level. The use of these values to model the pressure dependences of these reactions, via RRKM theory, provided a good fit only in the case of SiH2 + THF. The lack of fit in the other two cases is attributed to further reaction pathways for the association complexes of SiH2 with oxirane and oxetane. The finding of ethene as a product of the SiH2 + oxirane reaction supports a pathway leading to H2Si=O + C2H4 predicted by the theoretical calculations of Apeloig and Sklenak.
Resumo:
The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surfacescience experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10-5 Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a newCN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solidliquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solidliquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.
Resumo:
Acrylamide is formed from reducing sugars and asparagine during the preparation of French fries. The commercial preparation of French fries is a multi-stage process involving the preparation of frozen, par-fried potato strips for distribution to catering outlets where they are finish fried. The initial blanching, treatment in glucose solution and par-frying steps are crucial since they determine the levels of precursors present at the beginning of the finish frying process. In order to minimize the quantities of acrylamide in cooked fries, it is important to understand the impact of each stage on the formation of acrylamide. Acrylamide, amino acids, sugars, moisture, fat and color were monitored at time intervals during the frying of potato strips which had been dipped in varying concentrations of glucose and fructose during a typical pretreatment. A mathematical model of the finish-frying was developed based on the fundamental chemical reaction pathways, incorporating moisture and temperature gradients in the fries. This showed the contribution of both glucose and fructose to the generation of acrylamide, and accurately predicted the acrylamide content of the final fries.
Resumo:
Acrylamide is formed from reducing sugars and asparagine during the preparation of French fries. The commercial preparation of French fries is a multistage process involving the preparation of frozen, par-fried potato strips for distribution to catering outlets, where they are finish-fried. The initial blanching, treatment in glucose solution, and par-frying steps are crucial because they determine the levels of precursors present at the beginning of the finish-frying process. To minimize the quantities of acrylamide in cooked fries, it is important to understand the impact of each stage on the formation of acrylamide. Acrylamide, amino acids, sugars, moisture, fat, and color were monitored at time intervals during the frying of potato strips that had been dipped in various concentrations of glucose and fructose during a typical pretreatment. A mathematical model based on the fundamental chemical reaction pathways of the finish-frying was developed, incorporating moisture and temperature gradients in the fries. This showed the contribution of both glucose and fructose to the generation of acrylamide and accurately predicted the acrylamide content of the final fries.
Resumo:
The importance of the HSO(2) system in atmospheric and combustion chemistry has motivated several works dedicated to the study of associated structures and chemical reactions. Nevertheless controversy still exists in connection with the reaction SH + O(2) -> H + SO(2) and also related to the role of the HSOO isomers in the potential energy surface (PES). Here we report high-level ab initio calculation for the electronic ground state of the HSO(2) system. Energetic, geometric, and frequency properties for the major stationary states of the PES are reported at the same level of calculations:,CASPT2/aug-cc-pV(T+d)Z. This study introduces three new stationary points (two saddle points and one minimum). These structures allow the connection of the skewed HSOOs and the HSO(2) minima defining new reaction paths for SH + O(2) -> H + SO(2) and SH + O(2) -> OH + SO. In addition, the location of the HSOO isomers in the reaction pathways have been clarified.
Resumo:
The mechanism and the energy profile of the gas-phase reaction that mimics esterification under acidic conditions have been investigated at different levels of theory. These reactions are known to proceed with rate constants close to the collision limit in the gas-phase and questions have been raised as to whether the typical addition-elimination mechanism via a tetrahedral intermediate can explain the ease of these processes. Because these reactions are common to many organic and biochemical processes it is important to understand the intrinsic reactivity of these systems. Our calculations at different levels of theory reveal that a stepwise mechanism via a tetrahedral species is characterized by energy barriers that are inconsistent with the experimental results. For the thermoneutral exchange between protonated acetic acid and water and the exothermic reaction of protonated acetic acid and methanol our calculations show that these reactions proceed initially by a proton shuttle between the carbonyl oxygen and the hydroxy oxygen of acetic acid mediated by water, or methanol, followed by displacement at the acylium ion center. These findings suggest that the reactions in the gas-phase should be viewed as an acylium ion transfer reaction. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1596-1606, 2011
Resumo:
The electrooxidation of small organic molecules on platinum surfaces usually involves different structure-dependent steps that include adsorption and desorption of various species and multiple reaction pathways. Because temperature plays a decisive role on each individual step, understanding its global influence on the reaction mechanism is often a difficult task, especially when the system is studied under far from equilibrium conditions in the presence of kinetic instabilities. Aiming at contributing to unravel this problem, herein, we report an experimental study of the role played by temperature on the electrooxidation of formic acid on a Pt(100) electrode. The system was investigated under both close and far from equilibrium conditions, and apparent activation energies were estimated using different strategies. Overall, comparable activation energies were estimated under oscillatory and quasi-stationary conditions, at high potentials. At low potentials, the poisoning process associated with the formic acid dehydration step presented a negligible dependence with temperature and, therefore, zero activation energy. On the basis of our experimental findings, we suggest that formic acid dehydration is the main, but maybe not the unique, step that differentiates the temperature dependence of the oscillatory electrooxidation of formic acid on Pt(100) with that on polycrystalline platinum.
Resumo:
A set of five fungal species, Botrytis cinerea, Trichoderma viride and Eutypa lata, and the endophytic fungi Colletotrichum crassipes and Xylaria sp., was used in screening for microbial biocatalysts to detect monooxygenase and alcohol dehydrogenase activities (for the stereoselective reduction of carbonyl compounds). 4-Ethylcyclohexanone and acetophenone were biotransformed by the fungal set. The main reaction pathways involved reduction and hydroxylations at several positions including tertiary carbons. B. cinerea was very effective in the bioreduction of both substrates leading to the chiral alcohol (S)-1-phenylethanol in up to 90% enantiomeric excess, and the cis-trans ratio for 4-ethylcyclohexanol was 0:100. trans-4-Ethyl-1-(1S-hydroxyethyl)cyclohexanol, obtained from biotransformation by means of an acyloin-type reaction, is reported here for the first time. The absolute configurations of the compounds trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol and 4-(1S- and 4-(1R-hydroxyethyl)cyclohexanone were determined by NMR analysis of the corresponding Mosher's esters. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ni catalysts supported on gamma-Al2O3 modified by Rh and La were prepared and evaluated on the reforming of a model biogas. The catalysts were characterized by EDS, XRD, TPR, XANES and surface area estimation (BET). The results showed that in the original Ni catalyst, the Ni interacted strongly with the alumina support, exhibiting high reduction temperatures in TPR tests. In the catalytic tests, the addition of Rh on Ni catalysts improved CH4 conversion but also increased carbon deposition, possible by causing the segregation of Ni species under the reaction conditions. The presence of La on Ni catalysts reduced the carbon deposition by favoring the gasification of carbon species. Addition of synthetic air to the process improved the CH4 conversion and also decreased the carbon formation. The catalysts Ni, Rh-NiLa, and Rh showed good results in the conversion of model sulfur-free biogas, which suggests that they are promising catalysts to be tested in conversion of real biogas. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
ZusammenfassungDie Analyse von Isotopenverhältnissen ist von wachsender Bedeutung bei der Untersuchung von Quellen, Senken und chemischen Reaktionswegen atmosphärischer Spurengase. Distickstoffoxid (N2O) hat vier isotopisch einfach substituierte Spezies: 14N15N16O, 15N14N16O, 14N217O und 14N218O. In der vorliegenden Arbeit wurden massenspektrometrische Methoden entwickelt, die eine komplette Charakterisierung der Variationen im Vorkommen dieser Spezies ermöglichen. Es wird die bisher umfassendste Darstellung dieser Variationen in Troposphäre und Stratosphäre gegeben und mit Bezug auf eine Reihe von Laborexperimenten detailliert interpretiert.Die Laborexperimente machen einen großen Anteil dieser Doktorarbeit aus und konzentrieren sich auf die Isotopenfraktionierung in den stratosphärischen N2O-Senken, d. h. Photolyse und Reaktion mit elektronisch angeregten Sauerstoffatomen, O(1D). Diese Prozesse sind von dominantem Einfluß auf die Isotopenzusammensetzung von atmosphärischem N2O. Potentiell wichtige Parameter wie Temperatur- und Druckvariationen, aber auch Veränderungen der Wellenlänge im Fall der Photolyse wurden berücksichtigt. Photolyse bei stratosphärisch relevanten Wellenlängen > 190 nm zeigte immer Anreicherungen von 15N in beiden Stickstoffatomen des verbleibenden N2O wie auch in 17O und 18O. Die Anreicherungen waren am mittelständigen N-Atom signifikant höher als am endständigen N (mit mittleren Werten für 18O) und stiegen zu größeren Wellenlängen und niedrigeren Temperaturen hin an. Erstmalig wurden für 18O und 15N am endständigen N-Atom Isotopenabreicherungen bei 185 nm-Photolyse festgestellt. Im Gegensatz zur Photolyse waren die Isotopenanreicherungen bei der zweiten wichtigen N2O-Senke, Reaktion mit O(1D) vergleichsweise gering. Jedoch war das positionsabhängige Fraktionierungsmuster dem der Photolyse direkt entgegengesetzt und zeigte größere Anreicherungen am endständigen N-Atom. Demgemäß führen beiden Senkenprozesse zu charakteristischen Isotopensignaturen in stratosphärischem N2O. Weitere N2O-Photolyseexperimente zeigten, daß 15N216O in der Atmosphäre höchstwahrscheinlich mit der statistisch zu erwartenden Häufigkeit vorkommt.Kleine stratosphärische Proben erforderten die Anpassung der massenspektrometrischen Methoden an Permanentflußtechniken, die auch für Messungen an Firnluftproben von zwei antarktischen Stationen verwendet wurden. Das 'Firnluftarchiv' erlaubte es, den gegenwärtigen Trend und die präindustriellen Werte der troposphärischen N2O-Isotopensignatur zu bestimmen. Ein daraus konstruiertes globales N2O-Isotopenbudget ist im Einklang mit den besten Schätzungen der Gesamt-N2O-Emissionen aus Böden und Ozeanen.17O-Messungen bestätigten die Sauerstoffisotopenanomalie in atmosphärischem N2O, zeigten aber auch, daß N2O-Photolyse die Sauerstoffisotope gemäß einem massenabhängigen Fraktionierungsgesetz anreichert. Eine troposphärische Ursache für einen Teil des Exzeß-17O wurde vorgeschlagen, basierend auf der Reaktion von NH2 mit NO2, wodurch die Sauerstoffisotopenanomalie von O3 über NO2 an N2O übertragen wird.
Resumo:
Iodine chemistry plays an important role in the tropospheric ozone depletion and the new particle formation in the Marine Boundary Layer (MBL). The sources, reaction pathways, and the sinks of iodine are investigated using lab experiments and field observations. The aims of this work are, firstly, to develop analytical methods for iodine measurements of marine aerosol samples especially for iodine speciation in the soluble iodine; secondly, to apply the analytical methods in field collected aerosol samples, and to estimate the characteristics of aerosol iodine in the MBL. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) was the technique used for iodine measurements. Offline methods using water extraction and Tetra-methyl-ammonium-hydroxide (TMAH) extraction were applied to measure total soluble iodine (TSI) and total insoluble iodine (TII) in the marine aerosol samples. External standard calibration and isotope dilution analysis (IDA) were both conducted for iodine quantification and the limits of detection (LODs) were both 0.1 μg L-1 for TSI and TII measurements. Online couplings of Ion Chromatography (IC)-ICP-MS and Gel electrophoresis (GE)-ICP-MS were both developed for soluble iodine speciation. Anion exchange columns were adopted for IC-ICP-MS systems. Iodide, iodate, and unknown signal(s) were observed in these methods. Iodide and iodate were separated successfully and the LODs were 0.1 and 0.5 μg L-1, respectively. Unknown signals were soluble organic iodine species (SOI) and quantified by the calibration curve of iodide, but not clearly identified and quantified yet. These analytical methods were all applied to the iodine measurements of marine aerosol samples from the worldwide filed campaigns. The TSI and TII concentrations (medians) in PM2.5 were found to be 240.87 pmol m-3 and 105.37 pmol m-3 at Mace Head, west coast of Ireland, as well as 119.10 pmol m-3 and 97.88 pmol m-3 in the cruise campaign over the North Atlantic Ocean, during June – July 2006. Inorganic iodine, namely iodide and iodate, was the minor iodine fraction in both campaigns, accounting for 7.3% (median) and 5.8% (median) in PM2.5 iodine at Mace Head and over the North Atlantic Ocean, respectively. Iodide concentrations were higher than iodate in most of the samples. In the contrast, more than 90% of TSI was SOI and the SOI concentration was correlated significantly with the iodide concentration. The correlation coefficients (R2) were both higher than 0.5 at Mace Head and in the first leg of the cruise. Size fractionated aerosol samples collected by 5 stage Berner impactor cascade sampler showed similar proportions of inorganic and organic iodine. Significant correlations were obtained in the particle size ranges of 0.25 – 0.71 μm and 0.71 – 2.0 μm between SOI and iodide, and better correlations were found in sunny days. TSI and iodide existed mainly in fine particle size range (< 2.0 μm) and iodate resided in coarse range (2.0 – 10 μm). Aerosol iodine was suggested to be related to the primary iodine release in the tidal zone. Natural meteorological conditions such as solar radiation, raining etc were observed to have influence on the aerosol iodine. During the ship campaign over the North Atlantic Ocean (January – February 2007), the TSI concentrations (medians) ranged 35.14 – 60.63 pmol m-3 among the 5 stages. Likewise, SOI was found to be the most abundant iodine fraction in TSI with a median of 98.6%. Significant correlation also presented between SOI and iodide in the size range of 2.0 – 5.9 μm. Higher iodate concentration was again found in the higher particle size range, similar to that at Mace Head. Airmass transport from the biogenic bloom region and the Antarctic ice front sector was observed to play an important role in aerosol iodine enhancement. The TSI concentrations observed along the 30,000 km long cruise round trip from East Asia to Antarctica during November 2005 – March 2006 were much lower than in the other campaigns, with a median of 6.51 pmol m-3. Approximately 70% of the TSI was SOI on average. The abundances of inorganic iodine including iodine and iodide were less than 30% of TSI. The median value of iodide was 1.49 pmol m-3, which was more than four fold higher than that of iodate (median, 0.28 pmol m-3). Spatial variation indicated highest aerosol iodine appearing in the tropical area. Iodine level was considerably lower in coastal Antarctica with the TSI median of 3.22 pmol m-3. However, airmass transport from the ice front sector was correlated with the enhance TSI level, suggesting the unrevealed source of iodine in the polar region. In addition, significant correlation between SOI and iodide was also shown in this campaign. A global distribution in aerosol was shown in the field campaigns in this work. SOI was verified globally ubiquitous due to the presence in the different sampling locations and its high proportion in TSI in the marine aerosols. The correlations between SOI and iodide were obtained not only in different locations but also in different seasons, implying the possible mechanism of iodide production through SOI decomposition. Nevertheless, future studies are needed for improving the current understanding of iodine chemistry in the MBL (e.g. SOI identification and quantification as well as the update modeling involving organic matters).
Resumo:
Due to the high price of natural oil and harmful effects of its usage, as the increase in emission of greenhouse gases, the industry focused in searching of sustainable types of the raw materials for production of chemicals. Ethanol, produced by fermentation of sugars, is one of the more interesting renewable materials for chemical manufacturing. There are numerous applications for the conversion of ethanol into commodity chemicals. In particular, the production of 1,3-butadiene whose primary source is ethanol using multifunctional catalysts is attractive. With the 25% of world rubber manufacturers utilizing 1,3-butadiene, there is an exigent need for its sustainable production. In this research, the conversion of ethanol in one-step process to 1,3-butadiene was studied. According to the literature, the mechanisms which were proposed to explain the way ethanol transforms into butadiene require to have both acid and basic sites. But still, there are a lot of debate on this topic. Thus, the aim of this research work is a better understanding of the reaction pathways with all the possible intermediates and products which lead to the formation of butadiene from ethanol. The particular interests represent the catalysts, based on different ratio Mg/Si in comparison to bare magnesia and silica oxides, in order to identify a good combination of acid/basic sites for the adsorption and conversion of ethanol. Usage of spectroscopictechniques are important to extract information that could be helpful for understanding the processes on the molecular level. The diffuse reflectance infrared spectroscopy coupled to mass spectrometry (DRIFT-MS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Whereas, mass spectrometry was used to monitor the desorbed products. The set of studied materials include MgO, Mg/Si=0.1, Mg/Si=2, Mg/Si=3, Mg/Si=9 and SiO2 which were also characterized by means of surface area measurements.