969 resultados para raw wood


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafiltration (UF) is already used in pulp and paper industry and its demand is growing because of the required reduction of raw water intake and the separation of useful compounds from process waters. In the pulp and paper industry membranes might be exposed to extreme conditions and, therefore, it is important that the membrane can withstand them. In this study, extractives, hemicelluloses and lignin type compounds were separated from wood hydrolysate in order to be able to utilise the hemicelluloses in the production of biofuel. The performance of different polymeric membranes at different temperatures was studied. Samples were analysed for total organic compounds (TOC), lignin compounds (UV absorption at 280 nm) and sugar. Turbidity, conductivity and pH were also measured. The degree of fouling of the membranes was monitored by measuring the pure water flux before and comparing it with the pure water flux after the filtration of hydrolysate. According to the results, the retention of turbidity was observed to be higher at lower temperature compared to when the filtrations were operated at high temperature (70 °C). Permeate flux increased with elevated process temperature. There was no detrimental effect of temperature on most of the membranes used. Microdyn-Nadir regenerated cellulose membranes (RC) and GE-Osmonics thin film membranes seemed to be applicable in the chosen process conditions. The Polyethersulphone (NF-PES-10 and UH004P) and polysulphone (MPS-36) membranes used were highly fouled, but they showed high retentions for different compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the present work was to describe the wood fuel market of Ukraine and the Republic of Belarus, to estimate wood fuel potential and to research opportunities of wood fuel trading. Nowadays the wood waste, wood residues and by-products are becoming more and more potential raw materials for energy production. Against the background of unstable prices of traditional energy sources and environmental degradation, European States are planning to get 12% of energy from alternative sources already in 2010. Wastes of wood-working and agricultural productions are such sources. At present time the most popular wood biofuels are wood pellets, briquettes, wood chips and logs. Ukraine and the Republic of Belarus have a rather big potential of wood fuel resources. But wood fuels markets of these countries are on the entry level and quite disorganized. There is almost no domestic usage of wood biofuel. All produced pellets, briquettes as well as wood chips and logs go to the export, but the volumes are not high at present time. Ukraine and the Republic of Belarus have a very suitable geographical location. The most promising directions of wood fuel trading are developed wood fuel markets of Northern countries, Austria, Germany as well as actively developing markets of Poland and Hungary. At the long distance truck and sea transportation are the most appropriate. At a short distance cheap transportation by rail is more suitable. Thereby export is a potential opportunity for development of wood fuel production and in the future for usage in the researched countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purposes of this study are analyzing of forest sector of North-West and research of potentials of wood fuel market in this region. Research is focused on definition of the most perspective areas for export of wood fuel: logging residues, industrial wood processing residues, pellets and briquettes. Russian wood energy industry is very young in comparison with European countries. Nowadays there are no support and serious attention from the government to this sector. Hence almost all wood fuel market is oriented to the Western Europe. Export of wood fuel is dominated over the internal consumption. Pellet production in North –West is rapidly growing. Despite internal market has been developed the lion's share of pellets goes to export. Part of industrial wood processing residues is used by producers for their own goals, part goes to the export and rest of them is not used at all. Logging residues as raw materials for fuel have great potentials; most of them are left in a forest. Special techniques for their processing are too expensive for Russian entrepreneur. Some parts of North –West, which are situated close to the border with European countries, are potential for export. Political, economical and logistical challenges are complicated facilities for foreign customer to purchase wood fuel in remote parts of North-West. However some decisions for solving this problem exist and Russian manufactures are still interested in export of their products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transformation of a traditional pulp mill into an integrated forest biorefinery utilizing wood-derived biomass presents a promising opportunity for enterprise revival of the pulp and paper industry by offering new sources of revenue and significantly improved industry profitability. One proposed next generation process step for an integrated forest biorefinery is the extraction of hemicelluloses, allowing the co-production of pulp and ethanol or chemicals. The extraction of hemicelluloses, however, will likely have downstream effects on pulp quality. In the literature survey an overview of the integrated forest biorefinery and possible next generation technologies implementable in such facility were reviewed. Moreover, some hemicellulose extraction methods suitable for the co-production of pulp and hemicellulose products were looked into in more detail. Also, an overview on the significance of pulp’s hemicellulose content on papermaking properties of pulp fibers was made. In the literature it is stated that the hemicellulose content of pulp affects on many papermaking properties of pulp fibers, hornification and paper strength properties in particular. In the experimental part the goal was to investigate what effects alkaline hemicellulose extraction after bleaching has on the papermaking properties of birch Kraft pulp. It was discovered that tested pulps, normal and hemi-poor birch Kraft pulp, were different in many ways regarding to pulp properties. Differences were observed in both physical and chemical characteristics. Furthermore, clear distinctions were seen in tested paper properties, especially in strength properties, between the handsheets made from hemi-poor or normal birch Kraft pulp. Hemi-poor and normal birch Kraft pulps were also compared as a raw material of laboratory made copy paper. Based on this comparison, usage of hemi-poor birch pulp as the raw material of copy paper does not drastically deteriorate its quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The usage of the non-wood pulps in furnishes for various paper grades is the real alternative for substitution of wood fibres in the papermaking. This is especially important now, when the prices for wood are increasing and forest resources are depleting in many regions of our planet. However, there are several problems associated with utilization of such pulps. In terms of the papermaking process one of the main problems is the poor dewatering of the non-wood pulps. This problem can be partially solved by means of retention aids. In the literature part were described technological features of the non-wood pulps as the raw materials for paper production. Moreover, overviews of the retention chemicals and methods for retention measurement were done; special attention was paid to the mechanisms of retention and drainage. Finally, factors affecting on the drainage and retention of non-wood pulps were considered holistically. Particular emphasis was put on the possibility of enzyme treatment for drainage improvement. It was stated that retention aids can significantly improve dewatering of non-wood pulps. In the experimental part the goal was to investigate influence of various microparticle retention aids on the drainage, retention and formation of furnish containing wheat straw pulp, obtained by novel pulping process (Formico™Fib). The parallel test were performed with reference furnish containing only wood pulps. It was found that Bentonite-CPAM retention aid can significantly improve drainage and retention; however formation seems be suffer from such additives. It was stated that performance of the Silica-Starch retention aid significantly depends on the starch dosing sequence and wet-end conditions; this system have shown better formation than other tested retention aids. Silica-CPAM retention aid have provided comparable results in retention and drainage with Bentonite-CPAM, while Silica-starch did not improve dewatering and yielded in lowest filler retention among other aids. Ultimately, optimal dosages for the tested retention chemicals have been suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correct utilization of non-wood raw material allows reducing tree cutting and reduces emissions of carbon dioxide from burning of non-wood plants on farmers fields. Also it allows increasing economical situation in regions that non-wood plants are grown and where they are converted into pulp and paper. Also it gives positive effect on population pressure of work by addition of working place. In the literature survey included an overview of the historical meaning of non-wood pulp on developing paper production and structure of non-wood pulps. Moreover, anatomical and chemical composition of straw, reed and bamboo were studied more detailed. Also, an overview of the utilization of non-wood pulp in papermaking was made. Especially tissue, tree-free and release papers were reviewed. In the experimental part the goal was to investigate suitability of non-wood pulp like wheat straw pulp and bamboo pulp for different fiber products. Finally release and tree-free paper products were selected for experimental studies. It was discovered that wheat straw, especially screened wheat straw, showed good results for release paper. Also utilization of wheat straw and bamboo pulp in tree-free paper showed good results and suitability of these non-wood pulps for tree-free paper production. Also it was noticed that addition of wheat straw pulp gave positive effect on initial wet strength for release and tree-free paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charcoal production stands out as a raw material for the production of renewable energy. To assess wood quality in energy terms, studies have focused more on the holocellulose and lignin content than on the role of extractives. The objective of this study was to evaluate the relationship between the extractive content in cold water, in dichloromethane and total on energy properties of wood and charcoal, from six trees species. The extractives were removed with different solvents to be recorded and gross calorific value of wood was determined. The wood was carbonized at 1.67°C/min heating rate until maximum of 450°C and residence time of 30 min. The extractive content was correlated with the gravimetric yield, apparent relative density, ash, volatile matter, fixed carbon and gross calorific value of charcoal. The removal of total extractives and extractives soluble in dichloromethane reduced the gross calorific value of wood of most species evaluated. The extractives removed in cold water did not correlate with the parameters of carbonization. The extractives content in dichloromethane correlated with volatile matter, fixed carbon and gross calorific value. Total extractive content correlated with gravimetric yield, apparent relative density and gross calorific value of charcoal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i) drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii) physical properties and the drying quality. Five 11-year-old trees of each clone were felled, and only flatsawn boards of the first log were used. Basic density and total shrinkage were determined, and the drying test with wood specimens at 100 °C was carried out. Kiln drying of boards was performed, and initial and final moisture content, moisture gradient in thickness, drying stresses and drying defects were assessed. The defect scoring method was used to verify the behavior between the defects detected by specimen testing and the defects detected in kiln-dried boards. As main results, the drying schedule was too severe for the wood, resulting in a high level of boards with defects. The behavior between the defects in the drying test with specimens and the defects of kiln-dried boards was different, there was no correspondence, according to the defect scoring method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood contains only a very small amount of lipophilic extractives, commonly known as wood pitch. The pitch is known to cause severe problems in papermaking processes. The amount of pitch in process waters can be decreased by seasoning of the raw material prior to pulping, pulp washing, removal of pitch by flotation, adsorption of pitch onto various mineral surfaces, and retention of pitch to the fibre material by cationic polymers. The aim of this study was to determine the influence of pH on some of the methods used for pitch control. Experiments were performed using laboratory-made wood pitch emulsions with varying pH, salt concentration, hemicellulose concentration and pitch composition. These emulsions were used to study the phase distribution of resin and fatty acids, the colloidal stability of pitch with and without steric stabilisation by galactoglucomannans, and the interactions between wood pitch and mineral particles. Purification of unbleached and peroxidebleached mill process water was performed by froth flotation in combination with a foaming agent. The distribution of resin and fatty acids (RFAs) between colloidal pitch droplets and the water phase was very dependent on pH. At pH 3, almost all of the RFAs were attached to the pitch droplets, while increasing the pH led to increasing concentration of dissolved RFAs in the water phase. The presence of salt shifted the release of RFAs towards higher pH, while lower ratio of neutral pitch in the emulsion resulted in release of RFAs at lower pH. It was also seen that the dissolution and adsorption of RFAs at sudden pHchanges takes place very quickly. Colloidal pitch was more stable against electrolyte-induced aggregation at higher pH, due to its higher anionic charge. The concentration of cationic polymers needed to aggregate colloidal pitch also increased with increasing pH. The surface characteristics of solid particles, such as amount of charged groups, were very important for understanding their interactions with colloidal wood pitch. Water-soluble galactoglucomannans stabilised the colloidal pitch sterically against aggregation, but could not completely prevent interactions between wood pitch and hydrophilic particles. Froth flotation of unbleached and peroxidebleached process water showed that the pitch could be removed more effectively and selectively at low pH, compared to at neutral pH. The pitch was removed more effectively, using lower concentrations of foaming agent, from peroxide-bleached water than from unbleached water. The results show that pH has a major impact on various pulping and papermaking processes. It determines the anionic charge of the colloidal pitch and the solubility of certain pitch components. Because of this, the pH influences the effectiveness of pitch retention and removal of pitch. The results indicate that pitch problems could be diminished by acknowledging the importance of pH in various papermaking processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to study the effects of partial removal of wood hemicelluloses on the properties of kraft pulp.The work was conducted by extracting hemicelluloses (1) by a softwood chip pretreatment process prior to kraft pulping, (2) by alkaline extraction from bleached birch kraft pulp, and (3) by enzymatic treatment, xylanase treatment in particular, of bleached birch kraft pulp. The qualitative and quantitative changes in fibers and paper properties were evaluated. In addition, the applicability of the extraction concepts and hemicellulose-extracted birch kraft pulp as a raw material in papermaking was evaluated in a pilot-scale papermaking environment. The results showed that each examined hemicellulose extraction method has its characteristic effects on fiber properties, seen as differences in both the physical and chemical nature of the fibers. A prehydrolysis process prior to the kraft pulping process offered reductions in cooking time, bleaching chemical consumption and produced fibers with low hemicellulose content that are more susceptible to mechanically induced damages and dislocations. Softwood chip pretreatment for hemicellulose recovery prior to cooking, whether acidic or alkaline, had an impact on the physical properties of the non-refined and refined pulp. In addition, all the pretreated pulps exhibited slower beating response than the unhydrolyzed reference pulp. Both alkaline extraction and enzymatic (xylanase) treatment of bleached birch kraft pulp fibers indicated very selective hemicellulose removal, particularly xylan removal. Furthermore, these two hemicellulose-extracted birch kraft pulps were utilized in a pilot-scale papermaking environment in order to evaluate the upscalability of the extraction concepts. Investigations made using pilot paper machine trials revealed that some amount of alkalineextracted birch kraft pulp, with a 24.9% reduction in the total amount of xylan, could be used in the papermaking stock as a mixture with non-extracted pulp when producing 75 g/m2 paper. For xylanase-treated fibers there were no reductions in the mechanical properties of the 180 g/m2 paper produced compared to paper made from the control pulp, although there was a 14.2% reduction in the total amount of xylan in the xylanase-treated pulp compared to the control birch kraft pulp. This work emphasized the importance of the hemicellulose extraction method in providing new solutions to create functional fibers and in providing a valuable hemicellulose co-product stream. The hemicellulose removal concept therefore plays an important role in the integrated forest biorefinery scenario, where the target is to the co-production of hemicellulose-extracted pulp and hemicellulose-based chemicals or fuels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemicelluloses are potential raw material for several items produced in future wood-based biorefineries. One possible method for recovering hemicelluloses from wood extracts is ultrafiltration (UF). However, low filtration capacities and severe fouling restrict the use of tight UF membranes in the treatment of wood extracts. The lack of suitable commercial membranes creates a need for pretreatment which would decrease fouling and increase the filtration capacity. This thesis focuses on the evaluation of the possibility to improve the filtration capacity and decrease fouling with the pretreatment of wood extracts. Methods which remove harmful compounds and methods which degrade them are studied, as well as combinations of the methods. The tested pretreatments have an influence on both the concentration of different compounds and the molecular mass distribution of the compounds in the extract. This study revealed that in addition to which kind of compounds were removed, also the change in molecular size distribution affected the filtration capacity significantly. It was shown that the most harmful compounds for the filtration capacity of the hydrophobic 5 kDa membrane were the ones capable of permeating the membrane and fouling also the inner membrane structure. Naturally, the size of the most harmful compounds depends on the used UF membrane and is thus case-specific. However, in the choice of the pretreatment method, the focus should be on the removal of harmful compound sizes rather than merely on the total amount of removed foulants. The results proved that filtration capacity can be increased with both adsorptive and oxidative pretreatments even by hundreds of per cents. For instance, the use of XAD7 and XAD16 adsorbents increased the average flux in the UF of a birch extract from nearly zero to 107 kg/(m2h) and 175 kg/(m2h), respectively. In the treatment of a spruce extract, oxidation by pulsed corona discharge (PCD) increased the flux in UF from 46 kg/(m2h) to 158 kg/(m2h). Moreover, when a birch extract batch was treated with laccase enzyme, the flux in UF increased from 15 kg/(m2h) to 36 kg/(m2h). However, fouling was decreased only by adsorptive pretreatment while oxidative methods had a negligible or even negative impact on it. This demonstrates that filtration capacity and fouling are affected by different compounds and mechanisms. The results of this thesis show that filtration capacity can be improved and fouling decreased through appropriate pretreatment. However, the choice of the best possible pretreatment is case-specific and depends on the wood extract and the membrane used. Finding the best option requires information on the extract content and membrane characteristics as well as on the filtration performance of the membrane in the prevailing conditions and a multivariate approach. On the basis of this study, it can be roughly concluded that adsorptive pretreatment improves the filtration capacity and decreases fouling rather reliably, but it may lead to significant hemicellulose losses. Oxidation reduces the loss of valuable hemicelluloses and could improve the filtration capacity, but fouling challenges may remain. Combining oxidation with adsorptive pretreatment was not a solution for avoiding hemicellulose losses in the tested cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a research on the environmental impacts of particleboards produced from wastes, based on a comparative Life Cycle Assessment study. The particleboards were manufactured in laboratorial scale from the following residues: sugarcane bagasse (Saccharum spp.) and pine wood shavings (Pinus elliottii). The study was developed following the methodological guidelines of ISO 14040. The functional unit adopted was the m2 of the particleboards produced and the impacts were evaluated by the Environmental Development of Industrial Products method. The results indicated that pine particleboard present the highest environmental impact potential. Our findings suggested that the factors that mostly aggravated the environmental impacts were: the distance between the raw materials and the production site, and formaldehyde emissions (FE). The first is related to the combustion of fossil fuel during the acquisition of raw material, which achieved the values of 2185.94 g/m2 for consumption of non-renewable resources for pine particleboard and 893.53 g/m2 for bagasse particleboard. The second is related to the use of urea-formaldehyde resin, responsible for the FE into the air during production. The FE is accountable for the contamination of approximately 7,800,000.00 m3 of air per m2 of particleboard produced, and was the factor with the greatest impact in human toxicity potential. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochar can provide multiple benefits in the ecosystem. However, the presence of phytotoxic compounds in some biochars is an important concern that needs to be addressed and that depends on the raw material and the pyrolysis conditions used in biochar production. For example, sewage sludge biochars can have elevated heavy metal con- tents as they were present in the feedstock and were enriched during pyrolysis. Also during carbonization, some phytotoxic compounds such as polycyclic aromatic hydrocarbons (PAHs), polyphenols or volatile organic com- pounds (VOCs) could be formed representing a risk of contamination to soils and crops. In this work we report the results from seed germination and plant development for three biochars prepared from wood, paper sludge plus wheat husks and sewage sludge. Five higher plant species (cress, lentils, cucumber, tomato and lettuce) were studied. Biochar from wood shows seed inhibition in several species and the paper sludge biochar on lettuce. For the rest, the effect on seed germination was positive. No inhibition of root growth was detected, but in some cases leaves and stems growth were inhibited. Our results are significant in terms of advancing or current understanding on the impacts of biochar on vegetative growth and linking those effects to biochar properties.