988 resultados para ranking systems
Resumo:
The paper describes the processes and the outcomes of the ranking of LIS journal titles by Australia’s LIS researchers during 2007-8, firstly through the Australian federal government’s Research Quality Framework (RQF) process and then its replacement, the Excellence in Research for Australia (ERA) initiative. The requirement to rank the journals titles used came from discussions held at the RQF panel meeting held in February 2007 in Canberra, Australia. While it was recognised that the Web of Science (formerly ISI) journal impact approach of journal acceptance for measures of research quality and impact might not work for LIS, it was apparent that this model would be the default if no other ranking of journal titles became apparent. Although an increasing number of LIS and related discipline journals were appearing in the Web of Science listed rankings, the number was few and it was thus decided by the Australian LIS research community to undertake the ranking exercise.
Resumo:
Green energy is one of the key factors, driving down electricity bill and zero carbon emission generating electricity to green building. However, the climate change and environmental policies are accelerating people to use renewable energy instead of coal-fired (convention type) energy for green building that energy is not environmental friendly. Therefore, solar energy is one of the clean energy solving environmental impact and paying less in electricity fee. The method of solar energy is collecting sun from solar array and saves in battery from which provides necessary electricity to whole house with zero carbon emission. However, in the market a lot of solar arrays suppliers, the aims of this paper attempted to use superiority and inferiority multi-criteria ranking (SIR) method with 13 constraints establishing I-flows and S-flows matrices to evaluate four alternatives solar energies and determining which alternative is the best, providing power to sustainable building. Furthermore, SIR is well-known structured approach of multi-criteria decision support tools and gradually used in construction and building. The outcome of this paper significantly gives an indication to user selecting solar energy.
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
Most recommender systems attempt to use collaborative filtering, content-based filtering or hybrid approach to recommend items to new users. Collaborative filtering recommends items to new users based on their similar neighbours, and content-based filtering approach tries to recommend items that are similar to new users' profiles. The fundamental issues include how to profile new users, and how to deal with the over-specialization in content-based recommender systems. Indeed, the terms used to describe items can be formed as a concept hierarchy. Therefore, we aim to describe user profiles or information needs by using concepts vectors. This paper presents a new method to acquire user information needs, which allows new users to describe their preferences on a concept hierarchy rather than rating items. It also develops a new ranking function to recommend items to new users based on their information needs. The proposed approach is evaluated on Amazon book datasets. The experimental results demonstrate that the proposed approach can largely improve the effectiveness of recommender systems.
Resumo:
A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements.
Resumo:
In this paper, we consider the problem of document ranking in a non-traditional retrieval task, called subtopic retrieval. This task involves promoting relevant documents that cover many subtopics of a query at early ranks, providing thus diversity within the ranking. In the past years, several approaches have been proposed to diversify retrieval results. These approaches can be classified into two main paradigms, depending upon how the ranks of documents are revised for promoting diversity. In the first approach subtopic diversification is achieved implicitly, by choosing documents that are different from each other, while in the second approach this is done explicitly, by estimating the subtopics covered by documents. Within this context, we compare methods belonging to the two paradigms. Furthermore, we investigate possible strategies for integrating the two paradigms with the aim of formulating a new ranking method for subtopic retrieval. We conduct a number of experiments to empirically validate and contrast the state-of-the-art approaches as well as instantiations of our integration approach. The results show that the integration approach outperforms state-of-the-art strategies with respect to a number of measures.
Resumo:
In this work, we summarise the development of a ranking principle based on quantum probability theory, called the Quantum Probability Ranking Principle (QPRP), and we also provide an overview of the initial experiments performed employing the QPRP. The main difference between the QPRP and the classic Probability Ranking Principle, is that the QPRP implicitly captures the dependencies between documents by means of quantum interference". Subsequently, the optimal ranking of documents is not based solely on documents' probability of relevance but also on the interference with the previously ranked documents. Our research shows that the application of quantum theory to problems within information retrieval can lead to consistently better retrieval effectiveness, while still being simple, elegant and tractable.
Resumo:
In the last years several works have investigated a formal model for Information Retrieval (IR) based on the mathematical formalism underlying quantum theory. These works have mainly exploited geometric and logical–algebraic features of the quantum formalism, for example entanglement, superposition of states, collapse into basis states, lattice relationships. In this poster I present an analogy between a typical IR scenario and the double slit experiment. This experiment exhibits the presence of interference phenomena between events in a quantum system, causing the Kolmogorovian law of total probability to fail. The analogy allows to put forward the routes for the application of quantum probability theory in IR. However, several questions need still to be addressed; they will be the subject of my PhD research
Resumo:
The assumptions underlying the Probability Ranking Principle (PRP) have led to a number of alternative approaches that cater or compensate for the PRP’s limitations. All alternatives deviate from the PRP by incorporating dependencies. This results in a re-ranking that promotes or demotes documents depending upon their relationship with the documents that have been already ranked. In this paper, we compare and contrast the behaviour of state-of-the-art ranking strategies and principles. To do so, we tease out analytical relationships between the ranking approaches and we investigate the document kinematics to visualise the effects of the different approaches on document ranking.
Resumo:
For TREC Crowdsourcing 2011 (Stage 2) we propose a networkbased approach for assigning an indicative measure of worker trustworthiness in crowdsourced labelling tasks. Workers, the gold standard and worker/gold standard agreements are modelled as a network. For the purpose of worker trustworthiness assignment, a variant of the PageRank algorithm, named TurkRank, is used to adaptively combine evidence that suggests worker trustworthiness, i.e., agreement with other trustworthy co-workers and agreement with the gold standard. A single parameter controls the importance of co-worker agreement versus gold standard agreement. The TurkRank score calculated for each worker is incorporated with a worker-weighted mean label aggregation.
Resumo:
In this thesis we investigate the use of quantum probability theory for ranking documents. Quantum probability theory is used to estimate the probability of relevance of a document given a user's query. We posit that quantum probability theory can lead to a better estimation of the probability of a document being relevant to a user's query than the common approach, i. e. the Probability Ranking Principle (PRP), which is based upon Kolmogorovian probability theory. Following our hypothesis, we formulate an analogy between the document retrieval scenario and a physical scenario, that of the double slit experiment. Through the analogy, we propose a novel ranking approach, the quantum probability ranking principle (qPRP). Key to our proposal is the presence of quantum interference. Mathematically, this is the statistical deviation between empirical observations and expected values predicted by the Kolmogorovian rule of additivity of probabilities of disjoint events in configurations such that of the double slit experiment. We propose an interpretation of quantum interference in the document ranking scenario, and examine how quantum interference can be effectively estimated for document retrieval. To validate our proposal and to gain more insights about approaches for document ranking, we (1) analyse PRP, qPRP and other ranking approaches, exposing the assumptions underlying their ranking criteria and formulating the conditions for the optimality of the two ranking principles, (2) empirically compare three ranking principles (i. e. PRP, interactive PRP, and qPRP) and two state-of-the-art ranking strategies in two retrieval scenarios, those of ad-hoc retrieval and diversity retrieval, (3) analytically contrast the ranking criteria of the examined approaches, exposing similarities and differences, (4) study the ranking behaviours of approaches alternative to PRP in terms of the kinematics they impose on relevant documents, i. e. by considering the extent and direction of the movements of relevant documents across the ranking recorded when comparing PRP against its alternatives. Our findings show that the effectiveness of the examined ranking approaches strongly depends upon the evaluation context. In the traditional evaluation context of ad-hoc retrieval, PRP is empirically shown to be better or comparable to alternative ranking approaches. However, when we turn to examine evaluation contexts that account for interdependent document relevance (i. e. when the relevance of a document is assessed also with respect to other retrieved documents, as it is the case in the diversity retrieval scenario) then the use of quantum probability theory and thus of qPRP is shown to improve retrieval and ranking effectiveness over the traditional PRP and alternative ranking strategies, such as Maximal Marginal Relevance, Portfolio theory, and Interactive PRP. This work represents a significant step forward regarding the use of quantum theory in information retrieval. It demonstrates in fact that the application of quantum theory to problems within information retrieval can lead to improvements both in modelling power and retrieval effectiveness, allowing the constructions of models that capture the complexity of information retrieval situations. Furthermore, the thesis opens up a number of lines for future research. These include: (1) investigating estimations and approximations of quantum interference in qPRP; (2) exploiting complex numbers for the representation of documents and queries, and; (3) applying the concepts underlying qPRP to tasks other than document ranking.
Resumo:
The assumptions underlying the Probability Ranking Principle (PRP) have led to a number of alternative approaches that cater or compensate for the PRP’s limitations. All alternatives deviate from the PRP by incorporating dependencies. This results in a re-ranking that promotes or demotes documents depending upon their relationship with the documents that have been already ranked. In this paper, we compare and contrast the behaviour of state-of-the-art ranking strategies and principles. To do so, we tease out analytical relationships between the ranking approaches and we investigate the document kinematics to visualise the effects of the different approaches on document ranking.
Resumo:
In this paper, we consider the problem of document ranking in a non-traditional retrieval task, called subtopic retrieval. This task involves promoting relevant documents that cover many subtopics of a query at early ranks, providing thus diversity within the ranking. In the past years, several approaches have been proposed to diversify retrieval results. These approaches can be classified into two main paradigms, depending upon how the ranks of documents are revised for promoting diversity. In the first approach subtopic diversification is achieved implicitly, by choosing documents that are different from each other, while in the second approach this is done explicitly, by estimating the subtopics covered by documents. Within this context, we compare methods belonging to the two paradigms. Furthermore, we investigate possible strategies for integrating the two paradigms with the aim of formulating a new ranking method for subtopic retrieval. We conduct a number of experiments to empirically validate and contrast the state-of-the-art approaches as well as instantiations of our integration approach. The results show that the integration approach outperforms state-of-the-art strategies with respect to a number of measures.
Resumo:
While the Probability Ranking Principle for Information Retrieval provides the basis for formal models, it makes a very strong assumption regarding the dependence between documents. However, it has been observed that in real situations this assumption does not always hold. In this paper we propose a reformulation of the Probability Ranking Principle based on quantum theory. Quantum probability theory naturally includes interference effects between events. We posit that this interference captures the dependency between the judgement of document relevance. The outcome is a more sophisticated principle, the Quantum Probability Ranking Principle, that provides a more sensitive ranking which caters for interference/dependence between documents’ relevance.
Resumo:
Demand response can be used for providing regulation services in the electricity markets. The retailers can bid in a day-ahead market and respond to real-time regulation signal by load control. This paper proposes a new stochastic ranking method to provide regulation services via demand response. A pool of thermostatically controllable appliances (TCAs) such as air conditioners and water heaters are adjusted using direct load control method. The selection of appliances is based on a probabilistic ranking technique utilizing attributes such as temperature variation and statuses of TCAs. These attributes are stochastically forecasted for the next time step using day-ahead information. System performance is analyzed with a sample regulation signal. Network capability to provide regulation services under various seasons is analyzed. The effect of network size on the regulation services is also investigated.