923 resultados para random weights


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sampling a network with a given probability distribution has been identified as a useful operation. In this paper we propose distributed algorithms for sampling networks, so that nodes are selected by a special node, called the source, with a given probability distribution. All these algorithms are based on a new class of random walks, that we call Random Centrifugal Walks (RCW). A RCW is a random walk that starts at the source and always moves away from it. Firstly, an algorithm to sample any connected network using RCW is proposed. The algorithm assumes that each node has a weight, so that the sampling process must select a node with a probability proportional to its weight. This algorithm requires a preprocessing phase before the sampling of nodes. In particular, a minimum diameter spanning tree (MDST) is created in the network, and then nodes weights are efficiently aggregated using the tree. The good news are that the preprocessing is done only once, regardless of the number of sources and the number of samples taken from the network. After that, every sample is done with a RCW whose length is bounded by the network diameter. Secondly, RCW algorithms that do not require preprocessing are proposed for grids and networks with regular concentric connectivity, for the case when the probability of selecting a node is a function of its distance to the source. The key features of the RCW algorithms (unlike previous Markovian approaches) are that (1) they do not need to warm-up (stabilize), (2) the sampling always finishes in a number of hops bounded by the network diameter, and (3) it selects a node with the exact probability distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the approach taken to the clustering task at INEX 2009 by a group at the Queensland University of Technology. The Random Indexing (RI) K-tree has been used with a representation that is based on the semantic markup available in the INEX 2009 Wikipedia collection. The RI K-tree is a scalable approach to clustering large document collections. This approach has produced quality clustering when evaluated using two different methodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative studies of nascent entrepreneurs such as GEM and PSED are required to generate their samples by screening the adult population, usually by phone in developed economies. Phone survey research has recently been challenged by shifting patterns of ownership and response rates of landline versus mobile (cell) phones, particularly for younger respondents. This challenge is acutely intense for entrepreneurship which is a strongly age-dependent phenomenon. Although shifting ownership rates have received some attention, shifting response rates have remained largely unexplored. For the Australian GEM 2010 adult population study we conducted a dual-frame approach that allows comparison between samples of mobile and landline phones. We find a substantial response bias towards younger, male and metropolitan respondents for mobile phones – far greater than explained by ownership rates. We also found these response rate differences significantly biases the estimates of the prevalence of early stage entrepreneurship by both samples, even when each sample is weighted to match the Australian population.