49 resultados para raffinose
Resumo:
This MSc work was done in the project of BIOMECON financed by Tekes. The prime target of the research was, to develop methods for separation and determination of carbohydrates (sugars), sugar acids and alcohols, and some other organic acids in hydrolyzed pulp samples by capillary electrophoresis (CE) using UV detection. Aspen, spruce, and birch pulps are commonly used for production of papers in Finland. Feedstock components in pulp predominantly consist of carbohydrates, organic acids, lignin, extractives, and proteins. Here in this study, pulps have been hydrolyzed in analytical chemistry laboratories of UPM Company and Lappeenranta University in order to convert them into sugars, acids, alcohols, and organic acids. Foremost objective of this study was to quantify and identify the main and by-products in the pulp samples. For the method development and optimization, increased precision in capillary electrophoresis was accomplished by calculating calibration data of 16 analytes such as D-(-)-fructose, D(+)-xylose, D(+)-mannose, D(+)-cellobiose, D-(+)-glucose, D-(+)-raffinose, D(-)-mannitol, sorbitol, rhamnose, sucrose, xylitol, galactose, maltose, arabinose, ribose, and, α-lactose monohydratesugars and 16 organic acids such as D-glucuronic, oxalic, acetic, propionic, formic, glycolic, malonic, maleic, citric, L-glutamic, tartaric, succinic, adipic, ascorbic, galacturonic, and glyoxylic acid. In carbohydrate and polyalcohol analyses, the experiments with CE coupled to direct UV detection and positive separation polarity was performed in 36 mM disodium hydrogen phosphate electrolyte solution. For acid analyses, CE coupled indirect UV detection, using negative polarity, and electrolyte solution made of 2,3 pyridinedicarboxylic acid, Ca2+ salt, Mg2+ salts, and myristyltrimethylammonium hydroxide in water was used. Under optimized conditions, limits of detection, relative standard deviations and correlation coefficients of each compound were measured. The optimized conditions were used for the identification and quantification of carbohydrates and acids produced by hydrolyses of pulp. The concentrations of the analytes varied between 1 mg – 0.138 g in liter hydrolysate.
Resumo:
Biorefining is defined as sustainable conversion of biomass into marketable products and energy. Forests cover almost one third of earth’s land area, and account for approximately 40% of the total annual biomass production. In forest biorefining, the wood components are, in addition to the traditional paper and board products, converted into chemicals and biofuels. The major components in wood are cellulose, hemicelluloses, and lignin. The main hemicellulose in softwoods, which are of interest especially for the Nordic forest industry, is O-acetyl galactoglucomannan (GGM). GGM can be isolated in industrial scale from the waste waters of the mechanical pulping process, but is not yet today industrially utilized. In order to attain desired properties of GGM for specific end-uses, chemical and enzymatic modifications can be performed. Regioselective modifications of GGM, and other galactose-containing polysaccharides were done by oxidations, and by combining oxidations with subsequent derivatizations of the formed carbonyl or carboxyl groups. Two different pathways were investigated: activation of the C-6 positions in different sugar units by TEMPO-mediated oxidation, and activation of C-6 position in only galactose-units by oxidation catalyzed by the enzyme galactose oxidase. The activated sites were further selectively derivatized; TEMPO-oxidized GGM by a carbodiimide-mediated reaction forming amides, and GO-oxidized GGM by indium-mediated allylation introducing double or triple bonds to the molecule. In order to better understand the reaction, and to develop a MALDI-TOF-MS method for characterization of regioselectively allylated GGM, α-D-galactopyranoside and raffinose were used as model compounds. All reactions were done in aqueous media. To investigate the applicability of the modified polysaccharides for, e.g., cellulose surface functionalization, their sorption onto pulp fibres was studied. Carboxylation affects the sorption tendency significantly; a higher degree of oxidation leads to lower sorption. By controlling the degree of oxidation of the polysaccharides and the ionic strength of the sorption media, high degrees of sorption of carboxylated polysaccharides onto cellulose could, however, be obtained. Anionic polysaccharides were used as templates during laccase-catalyzed polymerization of aniline, offering a green, chemo-enzymatic route for synthesis of conducting polyaniline (PANI) composite materials. Different polysaccharide templates, such as, native GGM, TEMPO-oxidized GGM, naturally anionic κ-carrageenan, and nanofibrillated cellulose produced by TEMPO-oxidation, were assessed. The conductivity of the synthesized polysaccharide/PANI biocomposites varies depending on the polysaccharide template; κ-CGN, the anionic polysaccharide with the lowest pKa value, produces the polysaccharide/PANI biocomposites with the highest conductivity. The presented derivatization, sorption, and polymerization procedures open new application windows for polysaccharides, such as spruce GGM. The modified polysaccharides and the conducting biocomposites produced provide potential applications in biosensors, electronic devices, and tissue engineering.
Resumo:
Although much research has been conducted on blood-meal acquisition in adult female black flies (Diptera: Simuliidae), the same cannot be said for sugarmeals. Both sexes feed on sugar which provides energy for flight and it has been commonly held that nectar is the major carbohydrate source. This thesis addresses the question of whether a non-floral carbohydrate source, specifically homopteran honeydew, is ingested by male and female black flies. Black flies reared in the laboratory have been observed to readily ingest freshly excreted and older (dry) honeydew when presented with honeydew coated tamarack branches. Field work was conducted in Algonquin Park, Ontario in the spring and summer of 1993. Three separate studies were designed to test whether homopteran honeydew is an important carbohydrate source for black flies and whether flies from different habitats utilize different sugar sources. The sugars melezitose and / or stachyose are known to occur in a variety of homopteran honeydews and therefore were used as indicators of honeydew feeding by black flies. In the first study, black flies were collected with insect nets from a stand of Larix larcina heavily infested with honeydew - producing homopterans (Adelges lariciatus). Six black fly species were captured: Simulium venustum, S. rostra tum, S. vittatum, Stegopterna mutata, S. aureum and S. quebecense. Samples of honeydew and individual black flies were tested using thin layer chromatography (T. L. C.) with fructose, glucose, sucrose, turanose, melezitose, raffinose and stachyose as standards. All sugars except turanose and melezitose were found in the adelgid honeydew samples. Since the sugar melezitose was absent from ~ honeydew samples, stachyose was used to indicate that black flies were feeding from this particular honeydew source. Of the 201 black flies tested, 194 contained sugars which occurred in 16 combinations. Stachyose combinations excluding melezitose, present in 45.9 % of flies, were used to indicate that black flies had been feeding on the adelgid honeydew. In the second study, black flies were collected in the morning and evening on 8 collection dates, using a vehicle mounted insect net. The crops and midguts of 10 male and 10 female Simulium venustum were dissected on each sample date. In total the gut contents of 320 individual flies were analysed by T. L. C. The sugars identified from these flies were present in the following proportions: fructose (100.0%), glucose (100.0%), sucrose/turanose (50.4%), melezitose (30.3%), raffinose (18.8%) and stachyose (8.7%). These sugars occurred in fourteen different combinations. It is argued that the presence of melezitose and / or stachyose indicates that black flies had fed on homopteran honeydew. Significantly more female flies (40.0%) than male flies (27.5%) had fed on honeydew. In the third study, adult black flies were sampled by sweep netting vegetation in four habitats in the morning and evening on 8 collection dates. The habitats are as follows: (1) Davies Bog, (2) Abandoned Air Field (dominated by blueberries, Vaccinium spp.), (3) Deciduous Habitat and (4) Coniferous Habitat. Sugars in the crops and midguts of female flies were tested by T. L. C. and, for S. venustum, it was found that significantly fewer flies (18.8%) from the Air Field contained honeydew than from the other three sites (Davies Bog, 34.4%; Deciduous Habitat, 36.2%; Coniferous Habitat, 25.0%). Of the 1287 black flies tested individually by T. L. C. 441 (34.3%) contained melezitose and / or stachyose sugars indicating that this proportion of the population were feeding from Homopteran honeydew. It is therefore clear that floral (nectar) sugars are not the only source of carbohydrates available to black flies.
Resumo:
Crude cell-free extracts from Lactobacillus reuteri grown on cellobiose, maltose, lactose and raffinose were assayed for glycosidic activities. When raffinose was used as the carbon source, alpha-galactosidase was produced, showing the highest yield at the beginning of the stationary growth phase. A 64 kDa enzyme was purified by ultra- and gel filtration, and characterized for its hydrolytic and synthetic activity. Highest hydrolytic activity was found at pH 5.0 at 50 degreesC (K-M 0.55 mM, V-max 0.80 mumol min(-1) mg(-1) of protein). The crude cell-free extract was further used in glycosyl transfer reactions to synthesize oligosaccharides from melibiose and raffinose. At a substrate concentration of 23% (w/v) oligosaccharide mixtures were formed with main products being a trisaccharide at 26% (w/w) yield from melibiose after 8 h and a tetrasaccharide at 18% (w/w) yield from raffinose after 7 h. Methylation analysis revealed the trisaccharide to be 6' alpha-galactosyl melibiose and the tetrasaccharide to be stachyose. In both cases synthesis ceased when hydrolysis of the substrate reached 50%.
Resumo:
Stirred, pH-controlled anaerobic batch cultures were used to evaluate the in vitro utilisation by canine gut microflora of novel alpha-galactooligosaccharides synthesised with an enzyme extract from a canine Lactobacillus reuteri strain. Fructooligosaccharides (FOS), melibiose and raffinose were used as reference carbohydrates for the prebiotic properties of the synthesised oligosaccharide (galactosyl melibiose mixture-GMM). Addition of Lactobacillus acidophilus was used as control for the evaluation of the synbiotic properties of the oligosaccharide with L. reuteri. Populations of predominant gut bacterial groups were monitored over 48 h of batch culture by fluorescent in situ hybridisation, and short-chain fatty acid (SCFA) production was measured. GMM showed a higher increase in bifidobacteria and lactobacilli population number and size as well as a higher decrease in clostridia population number and size compared to the commercial prebiotics (FOS, melibiose, raffinose). This prebiotic effect was further increased by the addition of L. reuteri followed by a change in the SCFA production pattern compared to GMM alone or GMM with L. acidophilus. The observed change in SCFA production was in accordance with the fermentation properties of L. reuteri, suggesting that the novel synbiotic had a significant effect on the canine gut microflora fermentation.
Resumo:
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.
Resumo:
Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the `varzea` (VZ) floodplains and adjacent non-flooded `terra-firme` (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main nonstructural carbohydrate. Around 93% of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2.5%. In contrast, 74% of the endosperm in TF seeds was composed of galactomannans, while 22% of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution.
Resumo:
Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.
Resumo:
Seeds sprouts have been used as a good source of basic nutrients and nutraceutical compounds. The high nutritional value of seeds derives from the deposition of compounds during development. However some of these molecules are used in metabolic processes like germination, which leads to a considerable variation in their concentrations once these events are completed. In this work, we investigate the levels of inositols (myo-inositol, D-pinitol and ononitol), soluble carbohydrates and proteins in cotyledons of Phaseolus vulgaris and Vigna unguiculata sprouts. Sprouting increased myo-inositol and glucose content and reduction of raffinose and ononitol was observed. The protein levels increased in P. vulgaris and decreased in V. unguiculata sprouting. The level of sucrose was maintained in both sprouts. D-Pinitol was detected only in quiescent seeds. Our results suggested that bean sprout is an important source of proteins, sucrose, glucose and myo-inositol. Additionally, bean sprouts have low levels of raffinose, an antinutritional compound.
Resumo:
Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The yeast Kluyveromyces marxianus var. bulgaricus produced large amounts of extracellular inulinase activity when grown on inulin, sucrose, fructose and glucose as carbon source, This protein has been purified to homogeneity by using successive DEAE-Trisacryl Plus and Superose 6 HR 10/30 columns. The purified enzyme showed a relative molecular weight of 57 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 77 kDa by gel filtration in Superose 6 HR 10/30, Analysis by SDS-PAGE showed a unique polypeptide band with Coomassie Blue stain and nondenaturing PAGE of the purified enzyme obtained from media with different carbon sources showed the band, too, when stained for glucose oxidase activity, the optimal hydrolysis temperature for sucrose, raffinose and inulin was 55 degrees C and the optimal pH for sucrose was 4.75, the apparent K-m values for sucrose, raffinose and inulin are 4.58, 7.41 and 86.9 mg/ml, respectively, Thin layer chromatography showed that inulinase from K. marxianus var. bulgaricus was capable of hydrolyzing different substrates (sucrose, raffinose and inulin), releasing monosaccharides and oligosaccharides, the results obtained suggest the hypothesis that enzyme production was constitutive.
Resumo:
This work investigated the effects of increasing temperature from 30 degrees C to 47 degrees C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30 degrees C, and then the temperature of the system was raised so it ranged from 35 degrees C in the last reactor to 43 degrees C in the first reactor or feeding reactor with a 2 degrees C difference between reactors. After 15 days at steady state, the temperature was raised from 37 degrees C to 45 degrees C for 25 days at steady state, then from 39 degrees C to 47 degrees C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/alpha, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40 degrees C, weak growth at 41 degrees C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40 degrees C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47 degrees C, but no isolates showing growth above 41 degrees C were obtained.
Resumo:
An actinomycete strain (Ar386) was isolated from the soil of the Araraquara regio, SP, Brazil. The strain, named Streptomyces jacareensis, formed irregular rayed, rugose, grayish-white mycelium with sinuous, branched hyphae carrying rare isolated spores; assimilated glucose, galactose, inositol, ribose, maltose, sucrose, melibiose and starch but not mannitol, rhamnose, arabinose, xylose, lactose and raffinose; and contained LL- diaminopimelic acid in its cell wall. An antibiotic active against Gram- positive bacteria, which was characterized as being 26-deoxylaidlomycin and which may have application against poultry coccidiosis, was isolated from cultures of the strain. This was the first isolation of this antibiotic from a microorganism of the genus Streptomyces and also the first isolation of this antibiotic in Brazil.