988 resultados para radioactive nuclear beam physics
Resumo:
A new measurement of proton resonance scattering on Be-7 was performed tip to the center-of-mass energy of 6.7 MeV using the low-energy RI beam facility CRIB (CNS Radioactive Ion Beam separator) at the Center for Nuclear Study of the University of Tokyo. The excitation function of Be-7 + p elastic scattering above 3.5 MeV was measured Successfully for the first time, providing important information about the resonance structure of the B-8 nucleus. The resonances are related to the reaction rate of Be-7(p.gamma)B-8. which is the key reaction in solar B-8 neutrino production. Evidence for the presence of two negative parity states is presented. One of them is a 2(-) state observed as a broad s-wave resonance, the existence of which had been questionable. Its possible effects on the determination of the astrophysical S-factor of Be-7(p.gamma)B-8 at solar energy are discussed. The other state had not been observed in previous measurements, and its spin and parity were determined as 1(-). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The neutron-rich nucleus Li-11 is separated by the radioactive ion beam line RIBLL at HIRFL from the breakup of 50MeV/u C-13 on Be target. The total reaction cross sections for Li-11 at energies range from 25 to 45MeV/u on Si target have been measured by using the transmission method. The experimental data at high and low energies can be fitted well by Glauber model using two Gauss density distribution. The matter radius of Li-11 was also deduced.
Resumo:
A recoil separator Wien-filter which was developed for the Radioactive Ion Beam Line in Lanzhou (RIBLL) as an extension is described. It consists of 2 quadruple triplets and a standard Wien-filter. It was designed for study of the fusion-evaporation reactions. The overall design, background suppression, the transmission efficiency, the angular acceptance and the momentum acceptance have been described. All the performances fulfil the designed requirements. Based on the test results, with some modifications the investigations of the nuclei with Z <= 110 and the drip-line nuclei in the medium-heavy mass region can be carried out with this facility.
Resumo:
A transverse field gas ionization chamber as Delta E detector at the Radioactive Ion Beam Line in Lanzhou (RIBLL) is described. A high detection efficiency and long plateau are achieved with the mixed gas Ar(80%)+CO2(20%). The energy resolution is 3.25% for 4.94MeV alpha particle. This ionization chamber has been tested in the experiment with 50MeV/u Ni-58 bombarding Ta at RIBLL. All the fragments can be identified clearly by the ionization chamber.
Resumo:
The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles, viz. angulax dispersion plot, shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 due to its exotic structure, while no turning point was observed for O-17. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering angular dispersion of weakly bound nuclei with halo or skin structure as compared with that of the stable nuclei. Therefore the fact that the turning point of the elastic scattering angular dispersion plot appears at small angle for weakly bound nuclei can be used as a new probe to investigate the halo and skin phenomenon.
Resumo:
The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 having exotic structure, while no turning point was observed in the O-17 elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon.
Resumo:
With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL II) which connects the CSRm and the CSRe, an experimental setup for physics research is highly required. A large area neutron detection wall is the main part of the setup. This paper introduced the detection principle of the neutron detection wall and the Monte-Carlo simulation of its design under the environment of the Geant4 toolkit. We presented the final design with the optimized parameters and the performance of the wall.
Resumo:
We measured the total reaction cross sections of N-12 in Si at 36.2 MeV/u. using Radioactive Ion Beam Line in Lanzhou (RIBLL) with a new method. The reaction target was installed at the intermediate focusing point T1 at RIBLL. This scheme allows us to identify particles before and after the reaction target unambiguously. The total reaction cross section (1760 +/- 78mb) of N-12 in Si is obtained. Assuming that N-12 consists of a core C-11 plus one halo proton, the excitation function of N-12 on the Si and C targets is calculated with the Glauber model and the Fermi-Fermi density distributions. It can fit the experimental data very well. A large diffusion of the protons density distribution supports the halo structure for N-12.
Resumo:
Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from (10,12-18C) and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1 pxn) for relativistic C-10,C-12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the EPAX code is not able to describe the data satisfactorily. Using ABRABLA07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease ABRABLA07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p.A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦, 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters.Generally speaking,the present rates are much smaller than the previous ones.