967 resultados para queen longevity
Resumo:
Objectives: To reevaluate the longevity and intraocular safety of recombinant adenovirus (rAd)-mediated gene delivery after subretinal injection, and to prolong transgene expression through the combination of 2 synergistic immunosuppressants. Methods: An rAd vector carrying green fluorescent protein (GFP) gene was delivered subretinally in the rat eye. The GFP expression was monitored in real time by fundus fluorescent photography. Intraocular safety was examined by observation of changes of retinal pigmentation, cell infiltration in virus-contacted area, immunophenotyping for CD4(+) and CD8(+) cytotoxic T lymphocytes, and CD68(+) macrophages, histologic findings, and dark-adapted electroretinography. Two synergistic immunosuppressants, cyclosporine and sirolimus, were used alone or in combination to prolong transgene expression by temporary immunosuppression. Results: The GFP expression peaked on day 4, dramatically decreased on day 10, and was not detectable on day 14. The decreased GFP expression was coincident with cell infiltration in virus-contacted area. Immunostaining showed that the infiltrating cells were CD4(+) and CD8(+) cytotoxic T lymphocytes and CD68(+) macrophages. Clumped retinal pigmentation and decreased b wave of dark-adapted electroretinogram were observed at 3 to 4 weeks after injection. Histologic examination confirmed rAd-induced retinal degeneration. Transient immunosuppression by cyclosporine and sirolimus, either alone or in combination, improved transgene expression, with the combination being the most efficient. The combined immunosuppression attenuated but did not retard the rAd-induced retinal damage. Conclusions: Transgene expression mediated by rAd after subretinal delivery is short-term and toxic to the retina. Combination of cyclosporine and sirolimus may act as an immunosuppressive adjunct to prolong rAd-mediated gene transfer. Clinical Relevance: The intraocular safety of rAd should be carefully considered before clinical trials are performed.
Resumo:
Phosphine (hydrogen phosphide, PH3) is the fumigant most widely used to protect stored products from pest infestation. Despite the importance of this chemical, little is known about its mode of action. We have created three phosphine-resistant lines (pre-1, pre-7, pre-33) in the model organism C. elegans, with LC50 values 2, 5, and 9 times greater than the fully susceptible parental strain. Molecular oxygen was shown to be an extremely effective synergist with phosphine as, under hyperoxic conditions, 100% mortality was observed in wild-type nematodes exposed to 0.1 mg/l phosphine, a nonlethal concentration in air. All three mutants were resistant to the synergistic effects of oxygen in proportion to their resistance to phosphine with one mutant, pre-33, showing complete resistance to this synergism. We take the proportionality of cross-resistance between phosphine and the synergistic effect of oxygen to imply that all three mutants circumvent a mechanism of phosphine toxicity that is directly coupled to oxygen metabolism. Compared with the wild-type strain, all three mutants have an extended average life expectancy of from 12.5 to 25.3%. This is consistent with the proposed involvement of oxidative stress in both phosphine toxicity and ageing. Because the wild-type and mutant nematodes develop at the same rate, the longevity is unlikely to be caused by a clk-type reduction in oxidative metabolism, a potential alternative mechanism of phosphine resistance.
Resumo:
Aging is a long-standing biological question of tremendous social and cultural importance. Despite this, only in the last 15 years has biology started to make significant progress in understanding the underlying mechanisms that regulate aging. This progress stemmed mainly from the use of model organisms, which allowed the discovery of several genes directly modulating longevity. Interestingly, several of these longevity genes are necessary for normal mitochondrial function, and disruption of their activity delays the aging process. This is somewhat paradoxical, considering the importance of cellular respiration for energy production and viability of eukaryotic organisms. One possible rationalization for this is that by decreasing cellular respiration, reactive oxygen species (ROS) generation is also reduced, and in that way, cellular decay and aging are delayed.(...)
Resumo:
Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.
Resumo:
OBJECTIVE: This study was performed to observe the number of pacemakers that had never been reprogrammed after implantation, and the effect of optimised output programming on estimated longevity of pulse generators in patients with pacemaker METHODS: Sixty patients with Teletronics Reflex pacemakers were evaluated in a pacemaker clinic, from the time of the beginning of its activities, in June 1998, until March 1999. Telemetry was performed during the first clinic visit, and we observed how many pulse generators retained nominal output settings of the manufactures indicating the absence of reprogramming until that date. After evaluation of the capture threshold, reprogramming of pacemakers was performed with a safety margin of 2 to 2.5:1, and we compared the estimated longevity based on battery current at the manufacturer's settings with that based on settings achieved after reprogramming. RESULTS: In 95% of the cases, the original programmed setting was never reprogrammed before the patients attended the pacemaker clinic. Reprogramming the pacemaker prolonged estimated pulse generator life by 19.7±15.6 months (35.5%). CONCLUSION: The majority of the pacemakers evaluated had never been reprogrammed. Estimated pulse generator longevity can be prolonged significantly, using this simple, safe, efficacious, and cost-effective procedure.
Resumo:
OBJECTIVE: To establish the allelic and genotypic frequencies related to apolipoprotein E (ApoE) polymorphism and association of the genotypes with risk factors and cardiovascular morbidity in an elderly population with longevity. METHODS: We analyzed 70 elderly patients aged 80 years or more who were part of the Projeto Veranópolis. We used the gene amplification technique through the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and cleavage with the restriction enzyme Hha I to identify the ApoE genotypes. The most frequent genotypes were compared considering biological variables and cardiovascular risks and morbidity. RESULTS: The frequencies of the E2, E3, and E4 alleles were 0.05, 0.84, and 0.11, respectively, and of the genotypes were as follows: E3E3 (0.70), E3E4 (0.22), E2E3 (0.06), and E2E2 (0.02). Individuals with the E3E4 had a mean age greater than those with the E3E3. No association was observed between the genotypes and the variables analyzed, except for obesity, which was associated with the E3E3 genotype. Individuals with the E3E4 genotype had high levels of LDL-cholesterol and fibrinogen as compared with those with the E3E3 genotype. CONCLUSION: The results suggest that the E4E4 genotype may be associated with early mortality. A balance between the protective or neutral factors and the cardiovascular risk factors may occur among the individuals with different genotypes, attenuating the negative effects of the E4 allele.