981 resultados para quantum-state diffusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the one-way channel formalism of quantum optics has a physical realization in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge, or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret-state distribution and a class of quantum disentangling protocols for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, while individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F=0.73 +/- 0.02. A result achievable only by using quantum resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne detection, and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian quantum states such as squeezed single photons and superpositions of coherent states (SCSs). We show that a SCS with well defined parity and high fidelity can be generated from a Fock state of n

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photons and a superposition of coherent states, from input single- and two-photon Fock states, respectively. The input Fock state is interacted with an ancilla squeezed vacuum state using a beam splitter. We transform the quantum system by postselecting on the continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the principles of this scheme using coherent states and experimentally measure fidelities that are only achievable using quantum resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10−4. After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |β01⟩ = 1/√2(|01⟩ + |10⟩). I show that for ideal (non-ideal) control, an approximate |β01⟩ state could be prepared with error probability ϵ ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |β01⟩ state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4 quantum error detection code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain the finite-temperature unconditional master equation of the density matrix for two coupled quantum dots (CQD's) when one dot is subjected to a measurement of its electron occupation number using a point contact (PC). To determine how the CQD system state depends on the actual current through the PC device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process (a quantum-jump model). Then we show explicitly that our results can be extended to the quantum-diffusive limit when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schrodinger equations for its conditioned state vector if and only if the information carried away from the CQD system by the PC reservoirs can be recovered by the perfect detection of the measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the conditional quantum dynamics of an electron tunneling between two quantum dots subject to a measurement using a low transparency point contact or tunnel junction. The double dot system forms a single qubit and the measurement corresponds to a continuous in time readout of the occupancy of the quantum dot. We illustrate the difference between conditional and unconditional dynamics of the qubit. The conditional dynamics is discussed in two regimes depending on the rate of tunneling through the point contact: quantum jumps, in which individual electron tunneling current events can be distinguished, and a diffusive dynamics in which individual events are ignored, and the time-averaged current is considered as a continuous diffusive variable. We include the effect of inefficient measurement and the influence of the relative phase between the two tunneling amplitudes of the double dot/point contact system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum feedback can stabilize a two-level atom against decoherence (spontaneous emission), putting it into an arbitrary (specified) pure state. This requires perfect homodyne detection of the atomic emission, and instantaneous feedback. Inefficient detection was considered previously by two of us. Here we allow for a non-zero delay time tau in the feedback circuit. Because a two-level atom is a non-linear optical system, an analytical solution is not possible. However, quantum trajectories allow a simple numerical simulation of the resulting non-Markovian process. We find the effect of the time delay to be qualitatively similar to chat of inefficient detection. The solution of the non-Markovian quantum trajectory will not remain fixed, so that the time-averaged state will be mixed, not pure. In the case where one tries to stabilize the atom in the excited state, an approximate analytical solution to the quantum trajectory is possible. The result, that the purity (P = 2Tr[rho (2)] - 1) of the average state is given by P = 1 - 4y tau (where gamma is the spontaneous emission rate) is found to agree very well with the numerical results. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La théorie de l'information quantique étudie les limites fondamentales qu'imposent les lois de la physique sur les tâches de traitement de données comme la compression et la transmission de données sur un canal bruité. Cette thèse présente des techniques générales permettant de résoudre plusieurs problèmes fondamentaux de la théorie de l'information quantique dans un seul et même cadre. Le théorème central de cette thèse énonce l'existence d'un protocole permettant de transmettre des données quantiques que le receveur connaît déjà partiellement à l'aide d'une seule utilisation d'un canal quantique bruité. Ce théorème a de plus comme corollaires immédiats plusieurs théorèmes centraux de la théorie de l'information quantique. Les chapitres suivants utilisent ce théorème pour prouver l'existence de nouveaux protocoles pour deux autres types de canaux quantiques, soit les canaux de diffusion quantiques et les canaux quantiques avec information supplémentaire fournie au transmetteur. Ces protocoles traitent aussi de la transmission de données quantiques partiellement connues du receveur à l'aide d'une seule utilisation du canal, et ont comme corollaires des versions asymptotiques avec et sans intrication auxiliaire. Les versions asymptotiques avec intrication auxiliaire peuvent, dans les deux cas, être considérées comme des versions quantiques des meilleurs théorèmes de codage connus pour les versions classiques de ces problèmes. Le dernier chapitre traite d'un phénomène purement quantique appelé verrouillage: il est possible d'encoder un message classique dans un état quantique de sorte qu'en lui enlevant un sous-système de taille logarithmique par rapport à sa taille totale, on puisse s'assurer qu'aucune mesure ne puisse avoir de corrélation significative avec le message. Le message se trouve donc «verrouillé» par une clé de taille logarithmique. Cette thèse présente le premier protocole de verrouillage dont le critère de succès est que la distance trace entre la distribution jointe du message et du résultat de la mesure et le produit de leur marginales soit suffisamment petite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is a short introduction to and review of the cluster-state model of quantum computation, in which coherent quantum information processing is accomplished via a sequence of single-qubit measurements applied to a fixed quantum state known as a cluster state. We also discuss a few novel properties of the model, including a proof that the cluster state cannot occur as the exact ground state of any naturally occurring physical system, and a proof that measurements on any quantum state which is linearly prepared in one dimension can be efficiently simulated on a classical computer, and thus are not candidates for use as a substrate for quantum computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the electrical transport of a harmonically bound, single-molecule C-60 shuttle operating in the Coulomb blockade regime, i.e. single electron shuttling. In particular, we examine the dependance of the tunnel current on an ultra-small stationary force exerted on the shuttle. As an example, we consider the force exerted on an endohedral N@C-60 by the magnetic field gradient generated by a nearby nanomagnet. We derive a Hamiltonian for the full shuttle system which includes the metallic contacts, the spatially dependent tunnel couplings to the shuttle, the electronic and motional degrees of freedom of the shuttle itself and a coupling of the shuttle's motion to a phonon bath. We analyse the resulting quantum master equation and find that, due to the exponential dependence of the tunnel probability on the shuttle-contact separation, the current is highly sensitive to very small forces. In particular, we predict that the spin state of the endohedral electrons of N@C-60 in a large magnetic gradient field can be distinguished from the resulting current signals within a few tens of nanoseconds. This effect could prove useful for the detection of the endohedral spin-state of individual paramagnetic molecules such as N@C-60 and P@C-60, or the detection of very small static forces acting on a C-60 shuttle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entangled quantum states can be given a separable decomposition if we relax the restriction that the local operators be quantum states. Motivated by the construction of classical simulations and local hidden variable models, we construct `smallest' local sets of operators that achieve this. In other words, given an arbitrary bipartite quantum state we construct convex sets of local operators that allow for a separable decomposition, but that cannot be made smaller while continuing to do so. We then consider two further variants of the problem where the local state spaces are required to contain the local quantum states, and obtain solutions for a variety of cases including a region of pure states around the maximally entangled state. The methods involve calculating certain forms of cross norm. Two of the variants of the problem have a strong relationship to theorems on ensemble decompositions of positive operators, and our results thereby give those theorems an added interpretation. The results generalise those obtained in our previous work on this topic [New J. Phys. 17, 093047 (2015)].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This investigation presents a comprehensive characterization of magnetic and transport properties of an interesting superconducting wire, Nb-Ti -Ta, obtained through the solid-state diffusion between Nb-12 at.% Ta alloy and pure Ti. The physical properties obtained from magnetic and transport measurements related to the microstructure unambiguously confirmed a previous proposition that the superconducting currents flow in the center of the diffusion layer, which has a steep composition variation. The determination of the critical field also confirmed that the flux line core size is not constant, and in addition it was possible to determine that, in the center of the layer, the flux line core is smaller than at the borders. A possible core shape design is proposed. Among the wires studied, the one that presented the best critical current density was achieved for a diffusion layer with a composition of about Nb-32% Ti-10% Ta, obtained with a heat treatment at 700 degrees C during 120 h, in agreement with previous studies. It was determined that this wire has the higher upper critical field, indicating that the optimization of the superconducting behavior is related to an intrinsic property of the ternary alloy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous quadrature phase amplitude (position and momentum) measurements. For any quantum state, this contradiction is lost for situations where the quadrature phase amplitude results are always macroscopically distinct. We show that for optical realizations of this experiment, where one uses homodyne detection techniques to perform the quadrature phase amplitude measurement, one has an amplification prior to detection, so that macroscopic fields are incident on photodiode detectors. The high efficiencies of such detectors may open a way for a loophole-free test of local hidden variable theories.