977 resultados para quantum chemistry, Mukherjee multireference coupled-cluster, analytic gradients, parallelization, biradicals
Resumo:
Nine base-quartets were calculated by six semi-empirical methods and ab initio Hartree-Fork method using STO-3G basis set. The results showed that PM3 method can be use to calculate base quartets, the results of PM3 calculations are close to the ab initio
Resumo:
Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.
Resumo:
The structures of CH5O+ from two different reactions which are protonation of CH3OH from the above two pathways possess the same structures, CH3OH2+. The value of kinetic energy release for the metastable decomposition CH2OH3+-> CH2OH+ + H-2 determined from the experiment is in good agreement with that from theoretical calculations. The transition state of above reaction were disscussed.
Resumo:
Nine novel triazole compounds containing ester group were designed and synthesized. Their structures were confirmed by elemental, H-1 NMR and IR analyses, and optimized by means of DFT (Density Functional Theory) method at the B3LYP/6-31G* level. Based on the quantum-chemical calculation results and the Pearson coefficients between FA and quantumchemical parameters, V, LogP, MR and E-HOMO are shown to be the important relative factors which affect FA of the title compounds.
Resumo:
We provide an analysis of basic quantum-information processing protocols under the effect of intrinsic nonidealities in cluster states. These nonidealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster-state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum-state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria dels Conjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics es potencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funció densitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps que les distribucions de probabilitat quàntiques
Resumo:
Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc.
Resumo:
[EN]Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF4]. Solubility data (xIL,T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, xIL, with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures. Miscibility curves establish the composition and temperature intervals where thermodynamic properties of the mixtures, such as enthalpies Hm E and volumes Vm E, can be determined.