939 resultados para quantization artifacts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a two stage split vector quantization method with optimum bit allocation, for achieving minimum computational complexity. This also results in much lower memory requirement than the recently proposed switched split vector quantization method. To improve the rate-distortion performance further, a region specific normalization is introduced, which results in 1 bit/vector improvement over the typical two stage split vector quantizer, for wide-band LSF quantization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of a two stage transform vector quantizer (TSTVQ) for coding of line spectral frequency (LSF) parameters in wideband speech coding. The first stage quantizer of TSTVQ, provides better matching of source distribution and the second stage quantizer provides additional coding gain through using an individual cluster specific decorrelating transform and variance normalization. Further coding gain is shown to be achieved by exploiting the slow time-varying nature of speech spectra and thus using inter-frame cluster continuity (ICC) property in the first stage of TSTVQ method. The proposed method saves 3-4 bits and reduces the computational complexity by 58-66%, compared to the traditional split vector quantizer (SVQ), but at the expense of 1.5-2.5 times of memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Further improvement in performance, to achieve near transparent quality LSF quantization, is shown to be possible by using a higher order two dimensional (2-D) prediction in the coefficient domain. The prediction is performed in a closed-loop manner so that the LSF reconstruction error is the same as the quantization error of the prediction residual. We show that an optimum 2-D predictor, exploiting both inter-frame and intra-frame correlations, performs better than existing predictive methods. Computationally efficient split vector quantization technique is used to implement the proposed 2-D prediction based method. We show further improvement in performance by using weighted Euclidean distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important applications of adaptive systems is in noise cancellation using adaptive filters. Ln this paper, we propose adaptive noise cancellation schemes for the enhancement of EEG signals in the presence of EOG artifacts. The effect of two reference inputs is studied on simulated as well as recorded EEG signals and it is found that one reference input is enough to get sufficient minimization of EOG artifacts. This has been verified through correlation analysis also. We use signal to noise ratio and linear prediction spectra, along with time plots, for comparing the performance of the proposed schemes for minimizing EOG artifacts from contaminated EEG signals. Results show that the proposed schemes are very effective (especially the one which employs Newton's method) in minimizing the EOG artifacts from contaminated EEG signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EEG recordings are often contaminated with ocular artifacts such as eye blinks and eye movements. These artifacts may obscure underlying brain activity in the electroencephalogram (EEG) data and make the analysis of the data difficult. In this paper, we explore the use of empirical mode decomposition (EMD) based filtering technique to correct the eye blinks and eye movementartifacts in single channel EEG data. In this method, the single channel EEG data containing ocular artifact is segmented such that the artifact in each of the segment is considered as some type of slowly varying trend in the dataand the EMD is used to remove the trend. The filtering is done using partial reconstruction from components of the decomposition. The method is completely data dependent and hence adaptive and nonlinear. Experimental results are provided to check the applicability of the method on real EEG data and the results are quantified using power spectral density (PSD) as a measure. The method has given fairlygood results and does not make use of any preknowledge of artifacts or the EEG data used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the issue of rate-distortion (R/D) performance optimality of the recently proposed switched split vector quantization (SSVQ) method. The distribution of the source is modeled using Gaussian mixture density and thus, the non-parametric SSVQ is analyzed in a parametric model based framework for achieving optimum R/D performance. Using high rate quantization theory, we derive the optimum bit allocation formulae for the intra-cluster split vector quantizer (SVQ) and the inter-cluster switching. For the wide-band speech line spectrum frequency (LSF) parameter quantization, it is shown that the Gaussian mixture model (GMM) based parametric SSVQ method provides 1 bit/vector advantage over the non-parametric SSVQ method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new weighting function which is computationally simple and an approximation to the theoretically derived optimum weighting function shown in the literature. The proposed weighting function is perceptually motivated and provides improved vector quantization performance compared to several weighting functions proposed so far, for line spectrum frequency (LSF) parameter quantization of both clean and noisy speech data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effects of energy quantization on different single-electron transistor (SET) circuits (logic inverter, current-biased circuits, and hybrid MOS-SET circuits) are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantizationmainly increases the Coulomb blockade area and Coulomb blockade oscillation periodicity, and thus, affects the SET circuit performance. A new model for the noise margin of the SET inverter is proposed, which includes the energy quantization effects. Using the noise margin as a metric, the robustness of the SET inverter is studied against the effects of energy quantization. An analytical expression is developed, which explicitly defines the maximum energy quantization (termed as ``quantization threshold'') that an SET inverter can withstand before its noise margin falls below a specified tolerance level. The effects of energy quantization are further studiedfor the current-biased negative differential resistance (NDR) circuitand hybrid SETMOS circuit. A new model for the conductance of NDR characteristics is also formulated that explains the energy quantization effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better performing product code vector quantization (VQ) method is proposed for coding the line spectrum frequency (LSF) parameters; the method is referred to as sequential split vector quantization (SeSVQ). The split sub-vectors of the full LSF vector are quantized in sequence and thus uses conditional distribution derived from the previous quantized sub-vectors. Unlike the traditional split vector quantization (SVQ) method, SeSVQ exploits the inter sub-vector correlation and thus provides improved rate-distortion performance, but at the expense of higher memory. We investigate the quantization performance of SeSVQ over traditional SVQ and transform domain split VQ (TrSVQ) methods. Compared to SVQ, SeSVQ saves 1 bit and nearly 3 bits, for telephone-band and wide-band speech coding applications respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a mixed-split scheme is proposed in the context of 2-D DPCM based LSF quantization scheme employing split vector product VQ mechanism. Experimental evaluation shows that the new scheme is successfully being able to show better distortion performance than existing safety-net scheme for noisy channel even at considerably lower search complexity, by efficiently exploiting LSF trajectory behavior across the consecutive speech frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the design and analysis of a filter at the receiver of a source coding system to mitigate the excess Mean-Squared Error (MSE) distortion caused due to channel errors. It is assumed that the source encoder is channel-agnostic, i.e., that a Vector Quantization (VQ) based compression designed for a noiseless channel is employed. The index output by the source encoder is sent over a noisy memoryless discrete symmetric channel, and the possibly incorrect received index is decoded by the corresponding VQ decoder. The output of the VQ decoder is processed by a receive filter to obtain an estimate of the source instantiation. In the sequel, the optimum linear receive filter structure to minimize the overall MSE is derived, and shown to have a minimum-mean squared error receiver type structure. Further, expressions are derived for the resulting high-rate MSE performance. The performance is compared with the MSE obtained using conventional VQ as well as the channel optimized VQ. The accuracy of the expressions is demonstrated through Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the design and analysis of a filter at the receiver of a source coding system to mitigate the excess distortion caused due to channel errors. The index output by the source encoder is sent over a fading discrete binary symmetric channel and the possibly incorrect received index is mapped to the corresponding codeword by a Vector Quantization (VQ) decoder at the receiver. The output of the VQ decoder is then processed by a receive filter to obtain an estimate of the source instantiation. The distortion performance is analyzed for weighted mean square error (WMSE) and the optimum receive filter that minimizes the expected distortion is derived for two different cases of fading. It is shown that the performance of the system with the receive filter is strictly better than that of a conventional VQ and the difference becomes more significant as the number of bits transmitted increases. Theoretical expressions for an upper and lower bound on the WMSE performance of the system with the receive filter and a Rayleigh flat fading channel are derived. The design of a receive filter in the presence of channel mismatch is also studied and it is shown that a minimax solution is the one obtained by designing the receive filter for the worst possible channel. Simulation results are presented to validate the theoretical expressions and illustrate the benefits of receive filtering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4ÃÂ4 discrete cosine transform is one of the most important building blocks for the emerging video coding standard, viz. H.264. The conventional implementation does some approximation to the transform matrix elements to facilitate integer arithmetic, for which hardware is suitably prepared. Though the transform coding does not involve any multiplications, quantization process requires sixteen 16-bit multiplications. The algorithm used here eliminates the process of approximation in transform coding and multiplication in the quantization process, by usage of algebraic integer coding. We propose an area-efficient implementation of the transform and quantization blocks based on the algebraic integer coding. The designs were synthesized with 90 nm TSMC CMOS technology and were also implemented on a Xilinx FPGA. The gate counts and throughput achievable in this case are 7000 and 125 Msamples/sec.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication applications are usually delay restricted, especially for the instance of musicians playing over the Internet. This requires a one-way delay of maximum 25 msec and also a high audio quality is desired at feasible bit rates. The ultra low delay (ULD) audio coding structure is well suited to this application and we investigate further the application of multistage vector quantization (MSVQ) to reach a bit rate range below 64 Kb/s, in a scalable manner. Results at 32 Kb/s and 64 Kb/s show that the trained codebook MSVQ performs best, better than KLT normalization followed by a simulated Gaussian MSVQ or simulated Gaussian MSVQ alone. The results also show that there is only a weak dependence on the training data, and that we indeed converge to the perceptual quality of our previous ULD coder at 64 Kb/s.