33 resultados para pyrophosphatase
Resumo:
Membrane transport of proton and calcium (Ca2+) plays a fundamental role in growth and developmental processes in higher plant cells. The plasma membrane contains an ATPase (P-ATPase) that pumps protons into the extracellular space, whereas two proton pumps, a vacuolar-type ATPase (V-ATPase) and a pyrophosphatase (H+-PPase) are associated with the tonoplast and pump protons into the vacuole. The P-ATPase, V-ATPase and H+-PPase catalyse electrogenic H+-translocation, giving rise to a proton motive force used to transport different molecules, via specific transport proteins (channels or carriers: H+-symport or H+-antiport), across the plasma membrane and the tonoplast
Resumo:
The hydrolytic subunit of the H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1.) prepared from Rubus hispidus cell cultures has been purified from tonoplast-enriched membranes and analysed by SDS-polyacrylamide gel electrophoresis, Only one polypeptide of M(r) 70 000 was recovered with the V-PPase activity after solubilization in the presence of Triton X-100, purification by gel filtration (Superose) and anion exchange (Mono Q) chromatography. This polypeptide strongly cross-reacted with an antibody raised against the V-PPase from Vigna radiata. The tonoplast-enriched fraction was also used to solubilize and reconstitute the-V-PPase. The proteoliposomes showing a PPi-dependent proton transport activity were purified by gel filtration (Superose) and analysed by SDS-polyacrylamide gel electrophoresis. Only one polypeptide of M(r) 70 000 was recovered with the proton-pumping activity. All these data suggest that the native V-PPase from Rubus is composed of a single kind of polypeptide with an M(r) of 70 000 and representing the catalytic subunit.
Resumo:
Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO2] conditions (700 versus 370 μmol mol−1) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO2. The ambient 13C/12C isotopic composition (δ13C) of air CO2 was changed from-10.2 in ambient [CO2] to-23.6 under elevated [CO2] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO2] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO2] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO2 enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the δ13C of ear total organic matter and respired CO2, soluble sugar δ13C revealed that a small amount of labelled C reached the ear. The 12CO2 labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.
Resumo:
It is well known that hypertension is closely associated to the development of vascular diseases and that the inhibition of nitric oxide biosynthesis by administration of N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) leads to arterial hypertension. In the vascular system, extracellular purines mediate several effects: thus, ADP is the most important platelet agonist and recruiting agent, while adenosine, all end product Of nucleotide metabolism, is a vasodilator and inhibitor of platelet activation and recruitment. Members of several families of enzymes, known as ectonucleotidases, including E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolase), E-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase) and 5`-nucleotidase are able to hydrolyze extracellular nucleotides until their respective nucleosides. We investigated the ectonuclectidase activities of serum and platelets from rats made hypertensive by oral administration of L-NAME (30 mg/kg/day for 14 days or 30 mg/kg/day for 14 days Plus 7 days of L-NAME washout, in the drinking water) in comparison to normotensive control rats. L-NAME promoted a significant rise in systolic blood pressure from 112 +/- 9.8 to 158 +/- 23 mmHg. The left ventricle weight index (LVWI) was increased in rats treated with L-NAME for 14 days when compared to control animals. In Serum samples, ATP, ADP and AMP hydrolysis were reduced by about 27%, 36% and 27%, respectively. In platelets, the decrease in ATP, ADP and AMP hydrolysis Was approximately 27%, 24% and 32%, respectively. All parameters recovered after 7 days of L-NAME washout. HPLC demonstrated a reduction in ADP, AMP and hypoxanthine levels by about 64%, 69% and 87%, respectively. In this study, we showed that ectonucleotidase activities are decreased in serum and platelets from L-NAME-treated rats, which should represent an additional risk for the development of hypertension. The modulation of ectonucleotidase activities may represent an approach to antihypertensive therapy via inhibition of spontaneous platelet activation and recruitment, as well as thrombus formation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
As plaquetas sangüíneas são fragmentos citoplasmáticos, oriundos da ruptura dos megacariócitos, cuja principal função está relacionada à manutenção da integridade vascular. Os nucleotídeos extracelulares, ATP e ADP, bem como a adenosina, têm sido implicados em um grande número de funções fisiológicas: o ADP é o principal fator recrutador de plaquetas, enquanto que o ATP é um inibidor competitivo da agregação induzida por ADP. A adenosina é uma molécula capaz de induzir vasodilatação e inibir a agregação plaquetária. Desta maneira, a manutenção da sinalização purinérgica normal tem se mostrado importante para o tratamento de doenças cardiovasculares. Os nucleosídeos di e trifosfatos circulantes podem ser hidrolisados por membros de várias famílias de ectonucleotidases de membrana e solúveis, incluindo as ecto-nucleosídeo trifosfato difosfoidrolases (E-NTPDases) e ecto-nucleotídeo pirofosfatase/fosfodiesterases (E-NPPs), que em conjunto com a ecto-5’-nucleotidase, levam à formação de adenosina. Na superfície das plaquetas, ambas enzimas, E-NTPDase e ecto-5’-nucleotidase, estão descritas. O sistema renina-angiotensina é o principal regulador da função renal e cardiovascular, desenvolvendo um papel fundamental na homeostasia da pressão arterial e do balanço eletrolítico. A angiotensina II (ANGII) induz fisiologicamente a ativação das plaquetas, possivelmente devido às suas propriedades vasoconstritoras. Os objetivos deste trabalho foram, portanto: 1) caracterizar cineticamente a enzima E-NPP em plaquetas de ratos, utilizando o substrato marcador p-Nph-5’TMP e 2) esclarecer, mesmo que em parte, os possíveis efeitos da ANGII sobre a hidrólise extracelular de nucleotídeos por plaquetas de ratos. No primeiro capítulo deste trabalho, descrevemos uma atividade enzimática em plaquetas de ratos que compartilha as principais características bioquímicas já descritas para as E-NPPs: pH ótimo alcalino; valores de KM e Vmax calculados de aproximadamente 106.22 ± 17.83 μM e 3.44 ± 0.18 nmol p-nitrophenol/min/mg, respectivamente; e dependência de cátions divalentes. Além disso, o AMP inibiu somente a hidrólise do p-Nph-5’TMP. Por outro lado, a azida de sódio, em altas concentrações, a angiotensina II e o cloreto de gadolínio alteraram apenas as hidrólises de ATP ou ADP ou de ambos. No segundo capítulo, mostramos que a ANGII foi capaz de aumentar as hidrólises de ATP, ADP e AMP em plaquetas em todas as doses testadas (5, 50, 500 e 5000 picomóis). Entretanto, nenhuma alteração foi observada com relação à hidrólise do p-Nph-5'TMP. Em adição, observamos um aumento na hidrólise de AMP e uma diminuição na hidrólise de p-Nph-5'TMP em plaquetas de ratos espontaneamente hipertensos (SHR) quando comparados a ratos Wistar normotensos. De maneira geral, esta dissertação traz a caracterização bioquímica da enzima E-NPP na superfície de plaquetas intactas de ratos como sendo parte de um complexo sistema para a hidrólise de nucleotídeos nestes fragmentos citoplasmáticos, podendo, assim, contribuir para o desenvolvimento de terapias antiplaquetárias e para o tratamento de doenças vasculares. Adicionalmente, apresentamos alguns resultados demonstrando interações entre os sistemas angiotensinérgico e adenosinérgico de plaquetas de ratos, o que poderá contribuir para o entendimento e o tratamento de doenças cardiovasculares como hipertensão e arteriosclerose.
Resumo:
Purified membrane-bound alkaline phosphatase from rat osseous plate hydrolyzed pyrophosphate in the presence of magnesium ions, with a specific activity of 92.7 U/mg. Optimal apparent pH for pyrophosphatase activity was 8.0 and it remained unchanged on increasing the pyrophosphate concentration. In the absence of magnesium ions the enzyme had a K-m = 88 mu M and V = 36.7 U/mg for pyrophosphate and no inhibition by excess substrate was observed. Pyrophosphatase activity was rapidly destroyed at temperatures above 40 degrees C, but magnesium ions apparently protected the enzyme against danaturation. Sodium metavanadate (Ki = 1.0 mM) was a competitive inhibitor of pyrophosphatase activity, while levamisole (Ki = 8.2 mM) and theophylline (Ki = 7.4 mM) were uncompetitive inhibitors. Magnesium ions (K-0.5 = 1.7 mu M) stimulated pyrophosphatase activity, while cobalt (Ki = 48.5 mu M) and zinc (Ki = 22.0 mu M) ions were non-competitive inhibitors. Manganese and calcium ions had no effect on pyrophosphatase activity. The M-w of the pyrophosphatase: protein was 130 kDa by gel filtration, but a value of 65 kDa was obtained by dissociative gel electrophoresis, suggesting that it was a dimer of apparently identical subunits. These results suggested that pyrophosphatase activity stems from the membrane-bound osseous plate alkaline phosphatase and not from a different protein.
Resumo:
Pyrophosphate-dependent phosphofructokinase (PPi-PFK) has been detected in several types of plant cells, but the gene has not been reported in sugar cane. Using Citrux paradixi PPi-PFK gene (AF095520 and AF095521) sequences to search the sugar cane EST database, we have identified both the α and β subunits of this enzyme. The deduced amino acid sequences showed 76 and 80% similarity with the corresponding α and β subunits of C. paradisi. A high degree of similarity was also observed among the PFK β subunits when the alignment of the sugar cane sequences was compared to those of Ricinus communis and Solanum tuberosum, it appears that α and β are two distinct subunits; they were found at different concentrations in several sugar cane tissues. It remains to be determined if the different gene expression levels have some physiological importance and how they affect sucrose synthesis, export, and storage in vacuoles. A comparison between the amino acid sequences of β PFKs from a variety of organisms allowed us to identify the two critical Asp residues typical of this enzyme's activity site and the other binding sites; these residues are tightly conserved in all members of this protein family. Apparently, there are catalytic residues on the β subunit of the pyrophosphate-dependent enzyme.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Il core catalitico della DNA polimerasi III, composto dalle tre subunità α, ε e θ, è il complesso minimo responsabile della replicazione del DNA cromosomiale in Escherichia coli. Nell'oloenzima, α ed ε possiedono rispettivamente un'attività 5'-3' polimerasica ed un'attività 3'-5' esonucleasica, mentre θ non ha funzioni enzimatiche. Il presente studio si è concentrato sulle regioni del core che interagiscono direttamente con ε, ovvero θ (interagente all'estremità N-terminale di ε) e il dominio PHP di α (interagente all'estremità C-terminale di ε), delle quali non è stato sinora identificato il ruolo. Al fine di assegnare loro una funzione sono state seguite tre linee di ricerca parallele. Innanzitutto il ruolo di θ è stato studiato utilizzando approcci ex-vivo ed in vivo. I risultati presentati in questo studio mostrano che θ incrementa significativamente la stabilità della subunità ε, intrinsecamente labile. Durante gli esperimenti condotti è stata anche identificata una nuova forma dimerica di ε. Per quanto la funzione del dimero non sia definita, si è dimostrato che esso è attivamente dissociato da θ, che potrebbe quindi fungere da suo regolatore. Inoltre, è stato ritrovato e caratterizzato il primo fenotipo di θ associato alla crescita. Per quanto concerne il dominio PHP, si è dimostrato che esso possiede un'attività pirofosfatasica utilizzando un nuovo saggio, progettato per seguire le cinetiche di reazione catalizzate da enzimi rilascianti fosfato o pirofosfato. L'idrolisi del pirofosfato catalizzata dal PHP è stata dimostrata in grado di sostenere l'attività polimerasica di α in vitro, il che suggerisce il suo possibile ruolo in vivo durante la replicazione del DNA. Infine, è stata messa a punto una nuova procedura per la coespressione e purificazione del complesso α-ε-θ
Resumo:
DNA elongation is performed by Pol III α subunit in E. coli, stimulated by the association with ε and θ subunits. These three subunits define the DNA Pol III catalytic core. There is controversy about the DNA Pol III assembly for the simultaneous control of lagging and leading strands replication, since some Authors propose a dimeric model with two cores, whereas others have assembled in vitro a trimeric DNA Pol III with a third catalytic core, which increases the efficiency of DNA replication. Moreover, the function of the PHP domain, located at the N-terminus of α subunit, is still unknown. Previous studies hypothesized a possible pyrophosphatase activity, not confirmed yet. The present Thesis highlights by the first time the production in vivo of a trimeric E. coli DNA Pol III by co-expressing α, τ, ε and θ subunits. This trimeric complex has been enzymatically characterized and a molecular model has been proposed, with 2 α subunits sustaining the lagging-strand replication whereas the third core replicates the leading strand. In addition, the pyrophosphatase activity of the PHP domain has been confirmed. This activity involves, at least, the H12 and the D19 residues, whereas the D201 regulates phosphate release. On the other hand, an artificial polymerase (HoLaMa), designed by deleting the exonuclease domain of Klenow Fragment, has been expressed, purified and characterized for a better understanding of bacterial polymerases mechanism. The absence of exonuclease domain impaired enzyme processivity, since this domain is involved in DNA binding. Finally, Klenow enzyme, HoLaMa, α subunit and DNA Pol III αεθ have been characterized at the single-molecule level by FRET analysis, combining ALEX and TIRF microscopy. Fluorescently-labeled DNA molecules were immobilized, and changes in FRET efficiency enabled us to study polymerase binding and DNA polymerization.
Resumo:
Acetone metabolism in the aerobic bacterium Xanthobacter strain Py2 proceeds by a carboxylation reaction forming acetoacetate as the first detectable product. In this study, acetone carboxylase, the enzyme catalyzing this reaction, has been purified to homogeneity and characterized. Acetone carboxylase was comprised of three polypeptides with molecular weights of 85,300, 78,300, and 19,600 arranged in an α2β2γ2 quaternary structure. The carboxylation of acetone was coupled to the hydrolysis of ATP and formation of 1 mol AMP and 2 mol inorganic phosphate per mol acetoacetate formed. ADP was also formed during the course of acetone consumption, but only accumulated at low, substoichiometric levels (≈10% yield) relative to acetoacetate. Inorganic pyrophosphate could not be detected as an intermediate or product of acetone carboxylation. In the absence of CO2, acetone carboxylase catalyzed the acetone-dependent hydrolysis of ATP to form both ADP and AMP, with ADP accumulating to higher levels than AMP during the course of the assays. Acetone carboxylase did not have inorganic pyrophosphatase activity. Acetone carboxylase exhibited a Vmax for acetone carboxylation of 0.225 μmol acetoacetate formed min−1⋅mg−1 at 30°C and pH 7.6 and apparent Km values of 7.80 μM (acetone), 122 μM (ATP), and 4.17 mM (CO2 plus bicarbonate). These studies reveal molecular properties of the first bacterial acetone-metabolizing enzyme to be isolated and suggest a novel mechanism of acetone carboxylation coupled to ATP hydrolysis and AMP and inorganic phosphate formation.