982 resultados para purified antigen
Resumo:
Background: Antigens for Hantavirus serological tests have been produced using DNA recombinant technology for more than twenty years. Several different strategies have been used for that purpose. All of them avoid the risks and difficulties involved in multiplying Hantavirus in the laboratory. In Brazil, the Araraquara virus is one of the main causes of Hantavirus Cardio-Pulmonary Syndrome (HCPS). Methods: In this investigation, we report the expression of the N protein of the Araraquara Hantavirus in a Baculovirus Expression System, the use of this protein in IgM and IgG ELISA and comparison with the same antigen generated in E. coli. Results: The protein obtained, and purified in a nickel column, was effectively recognized by antibodies from confirmed HCPS patients. Comparison of the baculovirus generated antigen with the N protein produced in E. coli showed that both were equally effective in terms of sensitivity and specificity. Conclusions: Our results therefore indicate that either of these proteins can be used in serological tests in Brazil.
Resumo:
An antigen capture immunoassay to detect West Nile (WN) virus antigen in infected mosquitoes and avian tissues has been developed. With this assay purified WN virus was detected at a concentration of 32 pg/0.1 ml, and antigen in infected suckling mouse brain and laboratory-infected mosquito pools could be detected when the WN virus titer was 10(2.1) to 10(3.7) PFU/0.1 ml. In a blindly coded set of field-collected mosquito pools (n = 100), this assay detected WN virus antigen in 12 of 18 (66.7%) TaqMan-positive pools, whereas traditional reverse transcriptase PCR detected 10 of 18 (55.5%) positive pools. A sample set of 73 organ homogenates from naturally infected American crows was also examined by WN virus antigen capture immunoassay and TaqMan for the presence of WN virus. The antigen capture assay detected antigen in 30 of 34 (88.2%) TaqMan-positive tissues. Based upon a TaqMan-generated standard curve of infectious WN virus, the limit of detection in the antigen capture assay for avian tissue homogenates was approximately 10(3) PFU/0.1 ml. The recommended WN virus antigen capture protocol, which includes a capture assay followed by a confirmatory inhibition assay used to retest presumptive positive samples, could distinguish between the closely related WN and St. Louis encephalitis viruses in virus-infected mosquito pools and avian tissues. Therefore, this immunoassay demonstrates adequate sensitivity and specificity for surveillance of WN virus activity in mosquito vectors and avian hosts, and, in addition, it is easy to perform and relatively inexpensive compared with the TaqMan assay.
Resumo:
The methanol extract of Leptospira interrogans serovar canicola was purified by precipitation with acetone or acetone and chloroform. The antigenicity of the antigen was not altered by heating or treatment with pepsin and pronase. However the antigenicity was lost when the antigen was treated with periodic acid. Chemical analysis revealed the presence of 40% carbohydrate (22% methylpentose, 28%; hexoses),4% protein, 20% lipid and 2,7% phosphate. The complement fixation test with sera from patients with leptospirosis agreed with the microscopic agglutination reaction.
Resumo:
Yeast forms of five strains of Paracoccidioides brasiliensis (SN, 2, 18, 192 and JT- 1) were cultured in a synthetic medium for obtaining methylic antigens. These antigens were lyophilized and studied for each strain, to determine their partial biochemical composition, through measurements of total lipid, protein and carbohydrate contents. Lipids of methylic antigens were purified and analysed for sterols, phospholipids, glycolipids, li-poproteins, and partial characterization of sterols. Significant differences were found among antigenic preparations derived from distinct P. brasiliensis strains, in relation to the quantitative determinations. On the other hand, sterol analysis revealed the presence of ergosterol, lanosterol and squalene in all samples. The diversity verified in the biochemical characteristics of antigens derived from different P. brasiliensis strains, confirm the need of using a pool of fungal samples in order to produce antigen preparations for serological procedures without hampering their sensitivity.
Resumo:
Crude antigen and semi-purified proteins from scolices of Taenia solium cysticerci were evaluated for the immunodiagnosis of human neurocysticercosis neurocysticercosis. Semi-purified proteins obtained by electrophoresis on polyacrylamide gel and by electroelution were tested by means of the immunoenzymatic reaction against sera from normal individuals and from patients with neurocysticercosis or other parasitic diseases. The 100kDa protein provided 100% sensitivity and specificity in the immunodiagnosis. When 95 or 26kDa proteins were used, 95 and 100% sensitivity and specificity were obtained, respectively. The assays involving crude antigen and sera from normal individuals or from patients with neurocysticercosis, diluted to 1:256, gave excellent agreement with those in which 100, 95 or 26kDa proteins were tested against the same serum samples diluted to 1:64. (Kappa: 0.95 to 1.00). Crude scolex antigen may be useful for serological screening, while 100, 95 or 26kDa protein can be used in confirmatory tests on neurocysticercosis-positive cases.
Resumo:
Carcinoembryonic antigen (CEA), immunologically identical to CEA derived from colonic carcinoma, was identified and purified from perchloric acid (PCA) extracts of bronchial and mammary carcinoma. CEA extracted from bronchial and mammary carcinoma was quantitated by single radial immunodiffusion and was found to be in average about 50-75 times less abundant in these tumors than in colonic carcinoma. CEA could also be detected in one normal breast in lactation and at lower concentrations in normal lung (1000-4000 times lower than in colonic carcinoma). The small amounts of CEA present in normal tissues are distinct from the glycoprotein of small mol. wt showing only partial identity with CEA, that we recently identified and extracted in much larger quantities from normal lung and spleen. The demonstration of the presence of CEA in non digestive carcinoma by classical gel precipitation analysis suggests that the CEA detected in the plasma of such patients by radioimmunoassay is also identical to colonic carcinoma CEA. Our comparative study of plasma CEA from bronchial and colonic carcinoma, showing that CEA from both types of patient has the same elution pattern on Sephadex G-200 and gives parallel inhibition curves in the radioimmunoassay, is in favor of this hypothesis. However, it should not be concluded that all positive CEA radioimmunoassay indicate the presence of an antigen identical to colonic carcinoma CEA. A word of warning concerning the interpretation of radioimmunoassay is required by the observation that the addition of mg amounts of PCA extract of normal plasma, cleared of CEA by Sephadex filtration, could interfere in the test and mimic the presence of CEA.
Resumo:
We have developed an in vitro model of granuloma formation for the purpose of studying the immunological components of delayed type hypersensitivity granuloma formation in patients infected with Schistosoma mansoni. Our data show that 1) granulomatous hypersensitivity can be studied by examining the cellular reactivity manifested as multiple cell layers surrounding the antigen conjugated beads; 2) this reactivity is a CD4 cell dependent, macrophage dependent, B cell independent response and 3) the in vitro granuloma response is antigenically specific for parasite egg antigens. Studies designed to investigate the immune regulation of granulomatous hypersensitivity using purified populations of either CD4 or CD8 T cells have demonstrated the complexity of cellular interactions in the suppression of granulomatous hypersensitivity. The anti-S. mansoni egg immune responses of individual patients with chronic intestinal schistosomiasis can be classified either as soluble egg antigen (SEA) hypersensitive with maximal granulomatous hypersensitivity or SEA suppressive with activation of the T cell suppressor pathway with effective SEA granuloma modulation. Our data suggest that T cell network interactions are active in the generation of effective granuloma modulation in chronic intestinal schistosomiasis patients.
Resumo:
The proteasome plays a crucial role in the proteolytic processing of antigens presented to T cells in the context of major histocompatibility complex class I molecules. However, the rules governing the specificity of cleavage sites are still largely unknown. We have previously shown that a cytolytic T lymphocyte-defined antigenic peptide derived from the MAGE-3 tumor-associated antigen (MAGE-3(271-279), FLWGPRALV in one-letter code) is not presented at the surface of melanoma cell lines expressing the MAGE-3 protein. By using purified proteasome and MAGE-3(271-279) peptides extended at the C terminus by 6 amino acids, we identified predominant cleavages after residues 278 and 280 but no detectable cleavage after residue Val(279), the C terminus of the antigenic peptide. In the present study, we have investigated the influence of Pro(275), Leu(278), and Glu(280) on the proteasomal digestion of MAGE-3(271-285) substituted at these positions. We show that positions 278 and 280 are major proteasomal cleavage sites because they tolerate most amino acid substitutions. In contrast, the peptide bond after Val(279) is a minor cleavage site, influenced by both distal and proximal amino acid residues.
Resumo:
We report the identification of a 48kDa antigen targeted by antibodies which inhibit Plasmodium falciparum in vitro growth by cooperation with blood monocytes in an ADCI assay correlated to the naturally acquired protection. This protein is located on the surface of the merozoite stage of P. falciparum, and is detectable in all isolates tested. Epidemiological studies demonstrated that peptides derived from the amino acid sequence of MSP-3 contain potent B and T-cell epitopes recognized by a majority of individuals living in endemic areas. Moreover human antibodies either purified on the recombinant protein, or on the synthetic peptide MSP-3b, as well as antibodies raised in mice, were all found to promote parasite killing mediated by monocytes.
Resumo:
The production of interleukin 2 (IL-2) by peripheral blood mononuclear cells, from patients with different clinical forms of Chagas disease and healthy controls, was evaluated after stimulation with Trypanosoma cruzi antigen, PPD and PHA. PHA induced higher production of IL-2 in infected patients than healthy controls. No diferences were found between infected groups. With PPD the trend was similar, the only difference was that asymptomatic infected patients (INF) showed higher levels of IL-2 production than patients with cardiomyopathy (CDM). With T. cruzi antigen, most patients showed little or no IL-2 production at 24 hr, a peak at 48 hr and an abrupt fall at 72 hr. A similar pattern of IL- 2 production was observed in INF and CDM. To evaluate the physiologic relevance of the deficit in IL-2 production, we studied the effect of non-mitogenic concentratios of IL-2 in the proliferative response to specific antigens. The addition of IL-2 only enhanced the proliferative response of CDM patients. These observations suggest that patients suffering Chagas' disease, particularly CDM, have a significant reduction in the capacity to produce IL-2. These findings could be of importance in the pathogenesis of Chagas' disease.
Protective immunity induced in mice by F8.1 and F8.2 antigens purified from Schistosoma mansoni eggs
Resumo:
Schistosoma mansoni soluble egg antigens (SEA) were fractionated by isoelectric focusing, resulting in 20 components, characterized by pH, absorbance and protein concentration. The higher absorbance fractions were submitted to electrophoresis, and fraction 8 (F8) presented a specific pattern of bands on its isoelectric point. Protein 3 was observed only on F8, and so, it was utilized to rabbit immunization, in order to evaluate its capacity of inducing protective immunity. IgG antibodies from rabbit anti-F8 serum were coupled to Sepharose, and used to obtain the specific antigen by affinity chromatography. This antigen, submitted to electrophoresis, presented two proteic bands (F8.1 and F8.2), which were transferred to nitrocellulose membrane (PVDF) and sequenciated. The homology of F8.2 to known proteins was determined using the Basic Local Alignment Search Tool program (BLASTp). Significant homologies were obtained for the rabbit cytosolic Ca2+ uptake inhibitor, and for the bird a1-proteinase inhibitor. Immunization of mice with F8.1 and F8.2, in the presence of Corynebacterium parvum and Al(OH)3 as adjuvant, induced a significant protection degree against challenge infection, as observed by the decrease on worm burden recovered from portal system.
Resumo:
Fixation enhances cellular morphology and reduces loss of molecules during tissue processing. Antibodies against fixation-resistant epitopes are very useful, because they allow an immunocytochemical detection in tissue of better preserved morphology. However, fixatives can alter antigenicity and adversely affect the result of immunohistochemical procedures. To address this problem, this study examined the feasibility of generating antibodies to a paraformaldehyde-fixed antigen for use in immunohistochemical procedures. The large subunit of neurofilament proteins was selected for this study. Crude neurofilament proteins were isolated and separated by SDS-polyacrylamide gel electrophoresis. The large subunit of neurofilaments (NF-H) was electroeluted from the electrophoresis gel and exposed to paraformaldehyde, and used for immunization of a rabbit. The rabbit antiserum was affinity purified on CNBr-sepharose immobilized neurofilament proteins. On Western blots, the antibody reacted with the NF-H protein in a phosphorylation-dependent manner. In aldehyde-fixed cerebellum, the antibody strongly stained axons. In contrast, in alcohol-fixed cryostat sections the immunocytochemical detection was substantially reduced. The procedure presented in this study, involving a simple pretreatment of the immunogen, allows for the generation of an antibody that may be used in immunohistochemical studies where localization of the immunogen may be reduced or even lost by aldehyde fixation.
Resumo:
An enzyme-linked immunosorbent assay was standardized for the detection of cryptococcal antigen in serum and cerebrospinal fluid. The system was evaluated in clinical samples from patients infected by human immunodeficiency virus with and without previous cryptococcosis diagnosis. The evaluated system is highly sensitive and specific, and when it was compared with latex agglutination there were not significant differences. A standard curve with purified Cryptococcus neoformans antigen was settled down for the antigen quantification in positive samples.
Resumo:
The present study developed and standardized an enzime-linked immunosorbent assay (ELISA) to detect Giardia antigen in feces using rabbit polyclonal antibodies. Giardia cysts were purified from human fecal samples by sucrose and percoll gradients. Gerbils (Meriones unguiculatus) were infected to obtain trophozoites. Rabbits were inoculated with either cyst or trophozoite antigens of 14 Colombian Giardia isolates to develop antibodies against the respective stages. The IgG anti-Giardia were purified by sequential caprylic acid and ammonium sulfate precipitation. A portion of these polyclonal antibodies was linked to alkaline phosphatase (conjugate). One hundred and ninety six samples of human feces, from different patients, were tested by parasitologic diagnosis: 69 were positive for Giardia cysts, 56 had no Giardia parasites, and 71 revealed parasites other than Giardia. The optimal concentration of polyclonal antibodies for antigen capture was 40 µg/ml and the optimal conjugate dilution was 1:100. The absorbance cut-off value was 0.24. The parameters of the ELISA test for Giardia antigen detection were: sensitivity, 100% (95% CI: 93.4-100%); specificity, 95% (95% CI: 88.6-97.6%); positive predictive value, 91% (95% CI: 81.4-95.9%); and negative predictive value, 100% (95% CI: 96.1-100%). This ELISA will improve the diagnosis of Giardia infections in Colombia and will be useful in following patients after treatment.
Resumo:
State-of-the-art production technologies for conjugate vaccines are complex, multi-step processes. An alternative approach to produce glycoconjugates is based on the bacterial N-linked protein glycosylation system first described in Campylobacter jejuni. The C. jejuni N-glycosylation system has been successfully transferred into Escherichia coli, enabling in vivo production of customized recombinant glycoproteins. However, some antigenic bacterial cell surface polysaccharides, like the Vi antigen of Salmonella enterica serovar Typhi, have not been reported to be accessible to the bacterial oligosaccharyltransferase PglB, hence hamper development of novel conjugate vaccines against typhoid fever. In this report, Vi-like polysaccharide structures that can be transferred by PglB were evaluated as typhoid vaccine components. A polysaccharide fulfilling these requirements was found in Escherichia coli serovar O121. Inactivation of the E. coli O121 O antigen cluster encoded gene wbqG resulted in expression of O polysaccharides reactive with antibodies raised against the Vi antigen. The structure of the recombinantly expressed mutant O polysaccharide was elucidated using a novel HPLC and mass spectrometry based method for purified undecaprenyl pyrophosphate (Und-PP) linked glycans, and the presence of epitopes also found in the Vi antigen was confirmed. The mutant O antigen structure was transferred to acceptor proteins using the bacterial N-glycosylation system, and immunogenicity of the resulting conjugates was evaluated in mice. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with E. coli O121 LPS. One animal developed a significant rise in serum immunoglobulin anti-Vi titer upon immunization.