992 resultados para psychophysical performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over recent years much has been learned about the way in which depth cues are combined (e.g. Landy et al., 1995). The majority of this work has used subjective measures, a rating scale or a point of subjective equality, to deduce the relative contributions of different cues to perception. We have adopted a very different approach by using two interval forced-choice (2IFC) performance measures and a signal processing framework. We performed summation experiments for depth cue increment thresholds between pairs of pictorial depth cues in displays depicting slanted planar surfaces made from arrays of circular 'contrast' elements. Summation was found to be ideal when size-gradient was paired with contrast-gradient for a wide range of depth-gradient magnitudes in the null stimulus. For a pairing of size-gradient and linear perspective, substantial summation (> 1.5 dB) was found only when the null stimulus had intermediate depth gradients; when flat or steeply inclined surfaces were depicted, summation was diminished or abolished. Summation was also abolished when one of the target cues was (i) not a depth cue, or (ii) added in conflict. We conclude that vision has a depth mechanism for the constructive combination of pictorial depth cues and suggest two generic models of summation to describe the results. Using similar psychophysical methods, Bradshaw and Rogers (1996) revealed a mechanism for the depth cues of motion parallax and binocular disparity. Whether this is the same or a different mechanism from the one reported here awaits elaboration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a study of how edges are detected and encoded by the human visual system. The study begins with theoretical work on the development of a model of edge processing, and includes psychophysical experiments on humans, and computer simulations of these experiments, using the model. The first chapter reviews the literature on edge processing in biological and machine vision, and introduces the mathematical foundations of this area of research. The second chapter gives a formal presentation of a model of edge perception that detects edges and characterizes their blur, contrast and orientation, using Gaussian derivative templates. This model has previously been shown to accurately predict human performance in blur matching tasks with several different types of edge profile. The model provides veridical estimates of the blur and contrast of edges that have a Gaussian integral profile. Since blur and contrast are independent parameters of Gaussian edges, the model predicts that varying one parameter should not affect perception of the other. Psychophysical experiments showed that this prediction is incorrect: reducing the contrast makes an edge look sharper; increasing the blur reduces the perceived contrast. Both of these effects can be explained by introducing a smoothed threshold to one of the processing stages of the model. It is shown that, with this modification,the model can predict the perceived contrast and blur of a number of edge profiles that differ markedly from the ideal Gaussian edge profiles on which the templates are based. With only a few exceptions, the results from all the experiments on blur and contrast perception can be explained reasonably well using one set of parameters for each subject. In the few cases where the model fails, possible extensions to the model are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates various aspects of peripheral vision, which is known not to be as acute as vision at the point of fixation. Differences between foveal and peripheral vision are generally thought to be of a quantitative rather than a qualitative nature. However, the rate of decline in sensitivity between foveal and peripheral vision is known to be task dependent and the mechanisms underlying the differences are not yet well understood. Several experiments described here have employed a psychophysical technique referred to as 'spatial scaling'. Thresholds are determined at several eccentricities for ranges of stimuli which are magnified versions of one another. Using this methodology a parameter called the E2 value is determined, which defines the eccentricity at which stimulus size must double in order to maintain performance equivalent to that at the fovea. Experiments of this type have evaluated the eccentricity dependencies of detection tasks (kinetic and static presentation of a differential light stimulus), resolution tasks (bar orientation discrimination in the presence of flanking stimuli, word recognition and reading performance), and relative localisation tasks (curvature detection and discrimination). Most tasks could be made equal across the visual field by appropriate magnification. E2 values are found to vary widely dependent on the task, and possible reasons for such variations are discussed. The dependence of positional acuity thresholds on stimulus eccentricity, separation and spatial scale parameters is also examined. The relevance of each factor in producing 'Weber's law' for position can be determined from the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent to which the surface parameters of Progressive Addition Lenses (PALs) affect successful patient tolerance was investigated. Several optico-physical evaluation techniques were employed, including a newly constructed surface reflection device which was shown to be of value for assessing semi-finished PAL blanks. Detailed physical analysis was undertaken using a computer-controlled focimeter and from these data, iso-cylindrical and mean spherical plots were produced for each PAL studied. Base curve power was shown to have little impact upon the distribution of PAL astigmatism. A power increase in reading addition primarily caused a lengthening and narrowing of the lens progression channel. Empirical measurements also indicated a marginal steepening of the progression power gradient with an increase in reading addition power. A sample of the PAL wearing population were studied using patient records and questionnaire analysis (90% were returned). This subjective analysis revealed the reading portion to be the most troublesome lens zone and showed that patients with high astigmatism (> 2.00D) adapt more readily to PALs than those with spherical or low cylindrical (2.00D) corrections. The psychophysical features of PALs were then investigated. Both grafting visual acuity (VA) and contrast sensitivity (CS) were shown to be reduced with an increase in eccentricity from the central umbilical line. Two sample populations (N= 20) of successful and unsuccessful PAL wearers were assessed for differences in their visual performance and their adaptation to optically induced distortion. The possibility of dispensing errors being the cause of poor patient tolerance amongst the unsuccessful wearer group was investigated and discounted. The contrast sensitivity of the successful group was significantly greater than that of the unsuccessful group. No differences in adaptation to or detection of curvature distortion were evinced between these presbyopic groups.