999 resultados para proximal soil sensing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil compaction, reflected by high bulk density, is an environmental degradation process and new technologies are being developed for its detection. Despite the proven efficiency of remote sensing, it has not been widely used for soil density. Our objective was to evaluate the density of two soils: a Typic Quartzpisament (TQ) and a Rhodic Paleudalf (RP), using spectral reflectance obtained by a laboratory spectroradiometer between 450 and 2500 nm. Undisturbed samples were taken at two depths (0-20 and 60-80 cm), and were artificially compacted. Spectral data, obtained before and after compaction, were compared for both wet and dried compacted samples. Results demonstrated that soil density was greater in RP than in TQ at both depths due to its clayey texture. Spectral data detected high density (compacted) from low density (non-compacted) clayey soils under both wet and dry conditions. The detection of density in sandy soils by spectral reflectance was not possible. The intensity of spectral reflectance of high soil bulk density (compacted) samples was higher than for low density (non-compacted) soils due to changes in soil structure and porosity. Dry samples with high bulk density showed differences in the spectral intensity, but not in the absorption features. Wet samples in equal condition had statistically higher reflectance intensity than that of the low soil bulk density (non-compacted), and absorption differences at 1920 nm, which was due to the altered position of the water molecules. Soil line and spectral reflectance used together could detect soil bulk density variations for the clay soil. This technique could assist in the detection of high soil density in the laboratory by providing new soil information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging Spectroscopy (IS) is a promising tool for studying soil properties in large spatial domains. Going from point to image spectrometry is not only a journey from micro to macro scales, but also a long stage where problems such as dealing with data having a low signal-to-noise level, contamination of the atmosphere, large data sets, the BRDF effect and more are often encountered. In this paper we provide an up-to-date overview of some of the case studies that have used IS technology for soil science applications. Besides a brief discussion on the advantages and disadvantages of IS for studying soils, the following cases are comprehensively discussed: soil degradation (salinity, erosion, and deposition), soil mapping and classification, soil genesis and formation, soil contamination, soil water content, and soil swelling. We review these case studies and suggest that the 15 data be provided to the end-users as real reflectance and not as raw data and with better signal-to-noise ratios than presently exist. This is because converting the raw data into reflectance is a complicated stage that requires experience, knowledge, and specific infrastructures not available to many users, whereas quantitative spectral models require good quality data. These limitations serve as a barrier that impedes potential end-users, inhibiting researchers from trying this technique for their needs. The paper ends with a general call to the soil science audience to extend the utilization of the IS technique, and it provides some ideas on how to propel this technology forward to enable its widespread adoption in order to achieve a breakthrough in the field of soil science and remote sensing. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las actividades agropecuarias ejercen diferentes presiones sobre los recursos naturales. Esto ha llevado, en algunas áreas, a un deterioro del suelo que provoca un impacto sobre la sustentabilidad en los sistemas agropecuarios. Para evaluar la degradación del suelo se han propuesto listas de indicadores, sin embargo, se carece de una herramienta metodológica robusta, adaptada a las condiciones edafoclimáticas regionales. Además, existe una demanda de productores e instituciones interesados en orientar acciones para preservar el suelo. El objetivo de este proyecto es evaluar la degradación física, química y biológica de los suelos en agroecosistemas del centro-sur de Córdoba. Por ello se propone desarrollar una herramienta metodológica que consiste en un set de indicadores físicos, químicos y biológicos, con valores umbrales, integrados en índices de degradación, que asistan a los agentes tomadores de decisiones y productores, en la toma de decisiones respecto de la degradación del suelo. El área de trabajo será una región agrícola del centro-sur de Córdoba con más de 100 años de agricultura. La metodología comienza con la caracterización del uso del territorio y sistemas de manejo, su clasificación y la obtención de mapas base de usos y manejos, mediante sensores remotos y encuestas. Se seleccionarán sitios de muestreo mediante una metodología semi-dirigida usando un SIG, asegurando un mínimo de un punto de muestreo por unidad de mapeo. Se elegirán sitios de referencia lo más cercano a una condición natural. Los indicadores a evaluar surgen de listas propuestas en trabajos previos del grupo, seleccionados en base a criterios internacionales y a adecuados a suelos de la región. Se usarán indicadores núcleo y complementarios. Para la obtención de umbrales, se usarán por un lado valores provenientes de la bibliografía y por otro, umbrales generados a partir de la distribución estadística del indicador en suelos de referencia. Para estandarizar cada indicador se definirá una función de transformación. Luego serán ponderarán mediante análisis estadísticos mulivariados e integrados en índices de degradación física, química y biológica, y un índice general de degradación. El abordaje concluirá con el desarrollo de dos instrumentos para la toma de decisiones: uno a escala regional, que consistirá en mapas de degradación en base a unidades cartográficas ambientales, de uso del territorio y de sistemas de manejo y otro a escala predial que informará sobre la degradación del suelo de un lote en particular, en comparación con suelos de referencia. Los actores interesados contarán con herramientas robustas para la toma de decisiones respecto de la degradación del suelo tanto a escala regional como local. Agricultural activities exert different pressures on natural resources. In some areas this has led to soil degradation and has an impact on agricultural sustainability. To assess soil degradation a robust methodological tool, adapted to regional soil and climatic conditions, is lacking. In addition, there is a demand from farmers and institutions interested in direct actions to preserve the soil. The objective of this project is to assess physical, chemical and biological soil degradation in agroecosystems of Córdoba. We propose to develop a tool that consists of a set of physical, chemical and biological indicators, with threshold values, integrated in soil degradation indices. The study area is a region with more than 100 years of agriculture. The methodology begins with the characterization of land use and management systems and the obtaining of base maps by means of remote sensing and survey. Sampling sites will be selected through a semi-directed methodology using GIS, ensuring at least one sampling point by mapping unit. Reference sites will be chosen as close to a natural condition. The proposed indicators emerge from previous works of the group, selected based on international standards and appropriate for the local soils. To obtain the thresholds, we will use, by one side, values from the literature, and by the other, values generated from the statistical distribution of the indicator in the reference soils. To standardize indicators transformation functions will be defined. Indicators will be weighted by mans of multivariate analysis and integrated in soil degradation indices. The approach concluded with the development of two instruments for decision making: a regional scale one, consisting in degradation maps based on environmental, land use and management systems mapping units; and an instrument at a plot level which will report on soil degradation of a particular plot compared to reference soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high Km glucose transporter GLUT2 is a membrane protein expressed in tissues involved in maintaining glucose homeostasis, and in cells where glucose-sensing is necessary. In many experimental models of diabetes, GLUT2 gene expression is decreased in pancreatic beta-cells, which could lead to a loss of glucose-induced insulin secretion. In order to identify factors involved in pancreatic beta-cell specific expression of GLUT2, we have recently cloned the murine GLUT2 promoter and identified cis-elements within the 338-bp of the proximal promoter capable of binding islet-specific trans-acting factors. Furthermore, in transient transfection studies, this 338-bp fragment could efficiently drive the expression of the chloramphenicol acetyl transferase (CAT) gene in cell lines derived from the endocrine pancreas, but displayed no promoter activity in non-pancreatic cells. In this report, we tested the cell-specific expression of a CAT reporter gene driven by a short (338 bp) and a larger (1311 bp) fragment of the GLUT2 promoter in transgenic mice. We generated ten transgenic lines that integrated one of the constructs. CAT mRNA expression in transgenic tissues was assessed using the RNAse protection assay and the quantitative reverse transcribed polymerase chain reaction (RT-PCR). Overall CAT mRNA expression for both constructs was low compared to endogenous GLUT2 mRNA levels but the reporter transcript could be detected in all animals in the pancreatic islets and the liver, and in a few transgenic lines in the kidney and the small intestine. The CAT protein was also present in Langerhans islets and in the liver for both constructs by immunocytochemistry. These findings suggest that the proximal 338 bp of the murine GLUT2 promoter contain cis-elements required for the islet-specific expression of GLUT2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yosemite Valley poses significant rockfall hazard and related risk due to its glacially steepened walls and approximately 4 million visitors annually. To assess rockfall hazard, it is necessary to evaluate the geologic structure that contributes to the destabilization of rockfall sources and locate the most probable future source areas. Coupling new remote sensing techniques (Terrestrial Laser Scanning, Aerial Laser Scanning) and traditional field surveys, we investigated the regional geologic and structural setting, the orientation of the primary discontinuity sets for large areas of Yosemite Valley, and the specific discontinuity sets present at active rockfall sources. This information, combined with better understanding of the geologic processes that contribute to the progressive destabilization and triggering of granitic rock slabs, contributes to a more accurate rockfall susceptibility assessment for Yosemite Valley and elsewhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT In recent years, geotechnologies as remote and proximal sensing and attributes derived from digital terrain elevation models indicated to be very useful for the description of soil variability. However, these information sources are rarely used together. Therefore, a methodology for assessing and specialize soil classes using the information obtained from remote/proximal sensing, GIS and technical knowledge has been applied and evaluated. Two areas of study, in the State of São Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), conventional pedological mapping was done and from the soil classes found patterns were obtained with the following information: a) spectral information (forms of features and absorption intensity of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the area (according to each soil type); b) obtaining equations for determining chemical and physical properties of the soil from the relationship between the results obtained in the laboratory by the conventional method, the levels of chemical and physical attributes with the spectral data; c) supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). Finally, we developed a conventional pedological mapping in area 2 to which was compared with a digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second category level and became less useful in the categorical level 3 (37 % accuracy).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).