841 resultados para proton conductor, crystallinity, self assembly, porous network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled materials produced in the reaction between alkanethiol and Ag are characterized and compared. It is revealed that the size of the Ag substrate has a significant role in the self-assembly process and determines the reaction products. Alkanethiol adsorbs on the surface of Ag continuous planar thin films and only forms self-assembled monolayers (SAMs), while the reaction between alkanethiol and Ag clusters on inert surfaces is more aggressive and generates a significantly larger amount of alkanethiolate. Two dissimilar products are yielded depending on the size of the clusters. Small Ag clusters are more likely to be converted into multilayer silver-alkanethiolate (AgSR, R = CnH2n+1) crystals, while larger Ag clusters form monolayer-protected clusters (MPCs). The AgSR crystals are initially small and can ripen into large lamellae during thermal annealing. The crystals have facets and flat terraces with extended area, and have a strong preferred orientation in parallel with the substrate surface. The MPCs move laterally upon annealing and reorganize into a single-layer network with their separation distance approximately equal to the length of an extended alkyl chain. AgSR lamellar crystals grown on inert surfaces provide an excellent platform to study the melting characteristics of crystalline lamellae of polymeric materials with the thickness in the nanometer scale. This system is also unique in that each crystal has integer number of layers – magic-number size (thickness). The size of the crystals is controlled by adjusting the amount of Ag and the annealing temperature. X-ray diffraction (XRD) and atomic force microscopy (AFM) are combined to accurately determine the size (number of layers) of the lamellar crystals. The melting characteristics are measured with nanocalorimetry and show discrete melting transitions which are attributed to the magic-number sizes of the lamellar crystals. The discrete melting temperatures are intrinsic properties of the crystals with particular sizes. Smaller lamellar crystals with less number of layers melt at lower temperatures. The melting point depression is inversely proportional to the total thickness of the lamellae – the product of the number of layers and the layer thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How can we control the experimental conditions towards the isolation of specific structures? Why do particular architectures form? These are some challenging questions that synthetic chemists try to answer, specifically within polyoxometalate (POM) chemistry, where there is still much unknown regarding the synthesis of novel molecular structures in a controlled and predictive manner. This work covers a wide range of POM chemistry, exploring the redox self-assembly of polyoxometalate clusters, using both “one-pot”, flow and hydrothermal conditions. For this purpose, different vanadium, molybdenum and tungsten reagents, heteroatoms, inorganic salts and reducing agents have been used. The template effect of lone-pair containing pyramidal heteroatoms has been investigated. Efforts to synthesize new POM clusters displaying pyramidal heteroanions (XO32-, where X= S, Se, Te, P) are reported. The reaction of molybdenum with vanadium in the presence of XO32- heteroatoms is explored, showing how via the cation and experimental control it is possible to direct the self-assembly process and to isolate isostructural compounds. A series of four isostructural (two new, namely {Mo11V7P} and {Mo11V7Te} and two already known, namely {Mo11V7Se} and {Mo11V7S} disordered egg-shaped Polyoxometalates have been reported. The compounds were characterized by X-ray structural analysis, TGA, UV-Vis, FT-IR, Elemental and Flame Atomic Absorption Spectroscopy (FAAS) analysis and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Cyclic Voltammetry measurements have been carried out in all four compounds showing the effect of the ionic density of the heteroatom on the potential. High-Resolution ESI-MS studies have revealed that the structures retain their integrity in solution. Efforts to synthesize new mixed-metal compounds led to isolation, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ-isomer of the Keggin polyoxometalate cluster anion, {H2W4V9O33(C6H13NO3)}, by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster. Control experiments (in the absence of the organic compound) have proven that the tripodal ligand plays crucial role on the formation of the isomer. The six vanadium metal centres, which consist the upper part of the cluster, are bonded to the “capping” TEA tripodal ligand. This metal-ligand bonding directs and stabilises the formation of the final product. The δ-Keggin species was characterized by single-crystal X-ray diffraction, FT-IR, UV-vis, NMR and ESI-MS spectrometry. Electronic structure and structure-stability correlations were evaluated by means of DFT calculations. The compounds exhibited photochromic properties by undergoing single-crystal-to-single-crystal (SC-SC) transformations and changing colour under light. Non-conventional synthetic approaches are also used for the synthesis of the POM clusters comparing the classical “one-pot” reaction conditions and exploring the synthetic parameters of the synthesis of POM compounds. Reactions under hydrothermal and flow conditions, where single crystals that depend on the solubility of the minerals under hot water and high pressure can be synthesized, resulted in the isolation of two isostructural compounds, namely, {Mo12V3Te5}. The compound isolated from a continuous processing method, crystallizes in a hexagonal crystal system, forming a 2D porous plane net, while the compound isolated using hard experimental conditions (high temperature and pressure) crystallizes in monoclinic system, resulting in a different packing configuration. Utilizing these alternative synthetic approaches, the most kinetically and thermodynamically compounds would possibly be isolated. These compounds were characterised by single-crystal X-ray diffraction, FT-IR and UV-vis spectroscopy. Finally, the redox-controlled driven oscillatory template exchange between phosphate (P) and vanadate (V) anions enclosed in an {M18O54(XO4)2} cluster is further investigated using UV-vis spectroscopy as a function of reaction time, showed that more than six complete oscillations interconverting the capsule species present in solution from {P2M18} to {V2M18} were possible, provided that a sufficient concentration of the TEA reducing agent was present in solution. In an effort to investigate the periodicity of the exchange of the phosphate and vanadate anions, time dependent Uv-vis measurements were performed for a period at a range of 170-550 hours. Different experimental conditions were also applied in order to investigate the role of the reducing agent, as well as the effect of other experimental variables on the oscillatory system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report first-principles calculations on the electronic and structural properties of chemically functionalized adamantane molecules, either in isolated or crystalline forms. Boron and nitrogen functionalized molecules, aza-, tetra-aza-, bora-, and tetra-bora-adamantane, were found to be very stable in terms of energetics, consistent with available experimental data. Additionally, a hypothetical molecular crystal in a zincblende structure, involving the pair tetra-bora-adamantane and tetra-aza-adamantane, was investigated. This molecular crystal presented a direct and large electronic band gap and a bulk modulus of 20 GPa. The viability of using those functionalized molecules as fundamental building blocks for nanostructure self-assembly is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dinuclear macrocyclic complex is synthesized via the one-pot reaction of dipotassium nitroacetate, formaldehyde and a linear tetraamine copper(II) complex; the X-ray crystal structure of the product reveals an association of two dinuclear complexes to form a novel tetracopper(II) species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We numerically study a simple fluid composed of particles having a hard-core repulsion complemented by two patchy attractive sites on the particle poles. An appropriate choice of the patch angular width allows for the formation of ring structures which, at low temperatures and low densities, compete with the growth of linear aggregates. The simplicity of the model makes it possible to compare simulation results and theoretical predictions based on the Wertheim perturbation theory, specialized to the case in which ring formation is allowed. Such a comparison offers a unique framework for establishing the quality of the analytic predictions. We find that the Wertheim theory describes remarkably well the simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The S100 proteins are 10-12 kDa EF-hand proteins that act as central regulators in a multitude of cellular processes including cell survival, proliferation, differentiation and motility. Consequently, many S100 proteins are implicated and display marked changes in their expression levels in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases. The structure and function of S100 proteins are modulated by metal ions via Ca2+ binding through EF-hand motifs and binding of Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces. Ca2+ binding modulates S100 conformational opening and thus promotes and affects the interaction with p53, the receptor for advanced glycation endproducts and Toll-like receptor 4, among many others. Structural plasticity also occurs at the quaternary level, where several S100 proteins self-assemble into multiple oligomeric states, many being functionally relevant. Recently, we have found that the S100A8/A9 proteins are involved in amyloidogenic processes in corpora amylacea of prostate cancer patients, and undergo metal-mediated amyloid oligomerization and fibrillation in vitro. Here we review the unique chemical and structural properties of S100 proteins that underlie the conformational changes resulting in their oligomerization upon metal ion binding and ultimately in functional control. The possibility that S100 proteins have intrinsic amyloid-forming capacity is also addressed, as well as the hypothesis that amyloid self-assemblies may, under particular physiological conditions, affect the S100 functions within the cellular milieu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell surface-expressed and soluble CD40 self-assemble, most probably as noncovalent dimers. The cysteine-rich domain 1 (CRD1) of CD40 participated to dimerization and was also required for efficient receptor expression. Modelization of a CD40 dimer allowed the identification of lysine 29 in CRD1, whose mutation decreased CD40 self-interaction without affecting expression or response to ligand. When expressed alone, recombinant CD40-CRD1 bound CD40 with a KD of 0.6 μm. This molecule triggered expression of maturation markers on human dendritic cells and potentiated CD40L activity. These results suggest that CD40 self-assembly modulates signaling, possibly by maintaining the receptor in a quiescent state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.