946 resultados para protein-energy mulnutrition
Resumo:
In five male cirrhotic patients (Child A) and in four age- and sex-matched healthy control subjects, whole-body protein turnover was measured using a single oral dose of N-15-glycine as a tracer and urinary ammonia as end product. Subjects were studied in the fasting and feeding state, with different levels of protein and energy intake. The patients were underweight and presented lower plasma transthyretin and retinol-binding protein levels. When compared with controls, the kinetic studies showed patients to be hypometabolic in the fasting (Do) state and with the control diet [D-1 = (0.85 g of protein/154 kJ). kg(-1). day(-1)]. However, when corrected by body weight, the kinetic differences between groups disappeared, whereas the N-retention in the feeding state showed better results for the patients due mainly to their efficient breakdown decrease. When fed high-level protein or energy diets [D-2 = (0.9 g protein/195 kJ) and D-3 = (1.56 g protein/158 kJ). kg(-1). day(-1)], the patients showed D-0 = D-1 = D-2 < D-3 for N-flux and (D-0 = D-1) < D-3 (D-2 is intermediary) for protein synthesis. Thus, the present data suggest that the remaining mass of the undernourished mild cirrhotic patients has fairly good protein synthesis activity and also that protein, rather than energy intake, would be the limiting factor for increasing their whole-body protein synthesis.
Resumo:
Protein-energy malnutrition is a syndrome in which anaemia together with multivitamin and mineral deficiency may be present. The pathophysiological mechanisms involved have not, however, yet been completely elucidated. The aim of the present study was to evaluate the pathophysiological processes that occur in this anaemia in animals that were submitted to protein-energy malnutrition, in particular with respect to Fe concentration and the proliferative activity of haemopoietic cells. For this, histological, histochemical, cell culture and immunophenotyping techniques were used. Two-month-old male Swiss mice were submitted to protein-energy malnutrition with a low-protein diet (20g/kg) compared with control diet (400 g/kg). When the experimental group had attained a 20% loss of their original body weight, the animals from both groups received, intravenously, 20IU erythropoietin every other day for 14 d. Malnourished animals showed a decrease in red blood cells, Hb concentration and reticulocytopenia, as well as severe bone marrow and splenic atrophy. The results for serum Fe, total Fe-binding capacity, transferrin and erythropoietin in malnourished animals were no different from those of the control animals. Fe reserves in the spleen, liver and bone marrow were found to be greater in the malnourished animals. The mixed colony-forming unit assays revealed a smaller production of granulocyte-macrophage colony-forming units, erythroid burst-forming units, erythroid colony-forming units and CD45, CD117, CD119 and CD71 expression in the bone marrow and spleen cells of malnourished animals. These findings suggest that, in this protein-energy malnutrition model, anaemia is not caused by Fe deficiency or erythropoietin deficiency, but is a result of ineffective erythropoiesis.
Resumo:
The apparent digestibility coefficients (ADCs) of amino acids (AA), protein, and energy in six feed ingredients (Brazilian fish meal, soybean meal, corn gluten meal, alcoholic yeast, corn, and wheat bran) we evaluated for pacu juveniles. In general, all ingredients showed high digestibility values for all AA, and differences among ADCs of individual amino acid were detected (P < 0.01). Corn gluten, soybean, and fish meals had the highest ADCs of AA. The ADCs of protein in fish meal, yeast, and corn gluten meal should not be used as AA digestibility indicators, because those showed differences up to 6.7% between the ADCs of protein and AA. All ingredients had lower ADCs of energy than corn gluten meal (P < 0.01). Lysine was the first limiting amino acid in fish meal, corn gluten meal, wheat bran, and corn, and the second limiting amino acid in soybean meal, as methionine was the first limiting amino acid in soybean meal and yeast. However, the soybean meal was the best quality protein source, as it had the highest digestible essential amino acid index. This demonstrated that digestible amino acid values can be used to formulate practical diets for pacu, preventing potential deficiencies or excess that might cause environmental and economic losses.
Resumo:
The effects of the clinical and dietetics in patient managements on the protein-energy status of hospitalized patients were retrospectively (four yr) investigated in 243 adult (49 +/- 16 yr), male (168) and female (75) patients suffering from chronic liver diseases (42%), intestinal diseases with diarrhea (14%), digestive cancers (11%), chronic pancreatitis (10%), stomach and duodenum diseases (7%), acute pancreatitis (7%), primary protein-energy malnutrition (3%), esophagus diseases (3%), intestinal diseases with constipation 14 (2%) and chronic alcoholism (2%). The protein-energy nutritional status assessed by combinations of anthropometric and blood parameters showed 75% of protein energy malnutrition at the hospital entry mostly (4/5) in severe and moderate grades. The overall average of hospitalization was 20 +/- 15 days being the shortest (13 +/- 5,7 days) for esophagus diseases and the longest (28 +/- 21 days) for the intestinal diseases with diarrhea patients which also received mostly (42%) of the enteral and/or parenteral feedings followed by acute pacreatitis (41%) and digestive cancers (31%) patients. When compared to the entry the protein-energy malnutrition rate at the discharge decreased only 5% despite the increasing of 30% found on the protein-energy intake. The main improvement of the protein-energy nutritional status were attained to those patients showing protein-energy malnutrition milder degrees at the entry which belonged mostly to primary protein-energy malnutrition, acute pancreatitis and intestinal diseases with diarrhea diseases. The later two groups showed protein-energy nutritional status improvement only after the second week of hospitalization. The digestive cancers patients had their protein-energy nutritional status worsened throughout the hospitalization whereas it happened only in the first week for the intestinal diseases with diarrhea and chronic liver diseases patients, improving thereafter up to the discharge. The protein-energy nutritional status improvement found in few patients could be attributed to some complementary factors such as theirs mild degree of protein-energy malnutrition at entry and/or non-invasive propedeutics and/or enteral-parenteral feddings and/or longer hospitalization staying. The institutional causes for the unexpected lack of nutritional responses by the patients were probably the high demand for the few available beds which favour the hospitalization of the most severed patients and the university-teaching pressure for the high rotation of the available beds. Both often resulting in early discharging. In persisting the current physical area and attendance demand one could suggest an aggressive support early at the entry preceding and/or accompanying the more invasive propedeutical procedures.
Resumo:
The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 x 10(4) cells/mL) compared to control (69.6 ± 7.1 x 10(4) cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h-1·mL-1), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h-1·mL-1, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM.
Resumo:
Objectives: To determine whether routine oral and enteral nutritional supplementation can improve the weight, anthropometry, and survival of adult patients.
Resumo:
A desnutrição protéico-energética constitui problema comum aos pacientes com insuficiência renal crônica, influenciando diretamente na sua morbi-mortalidade. A acidose metabólica tem papel no catabolismo protéico, ativando a via proteolítica proteasoma-ubiquitina, dependente de adenosina trifosfato, e conjuntamente com glicocorticóides induz uma maior atividade na desidrogenase que degrada os aminoácidos de cadeia ramificada. Esta revisão teve como objetivo descrever o mecanismo pelo qual a acidose metabólica nos pacientes com insuficiência renal crônica promove o catabolismo protéico, favorecendo assim a desnutrição, bem como avaliar os efeitos do uso de bicarbonato de sódio na correção da acidose e conseqüentemente redução do catabolismo protéico. Pesquisas mostram melhora da acidose pelo uso de bicarbonato de sódio e conseqüente redução do catabolismo protéico na insuficiência renal crônica, podendo ser esta uma conduta promissora na atenuação da desnutrição nestes pacientes.
Resumo:
Improper dietary protein and energy levels and their ratio will lead to increased fish production cost. This work evaluated effects of dietary protein : energy ratio on growth and body composition of pacu, Piaractus mesopotamicus. Fingerling pacu (15.5 +/- 0.4 g) were fed twice a day for 10 weeks until apparent satiation with diets containing 220, 260, 300, 340 or 380 g kg-1 crude protein (CP) and 10.9, 11.7, 12.6, 13.4 or 14.2 MJ kg-1 digestible energy (DE) in a totally randomized experimental design, 5 x 5 factorial scheme (n = 3). Weight gain, specific growth rate increased and feed conversion ratio (FCR) decreased significantly (P < 0.05) when CP increased from 220 to 271, 268 and 281 g kg-1 respectively. Pacu was able to adjust feed consumption in a wide range of dietary DE concentration. Fish fed 260 CP diets showed best (P < 0.05) protein efficiency ratio and FCR with 11.7-12.6 MJ kg-1; but for the 380 CP-diets group, significant differences were observed only at 14.2 MJ kg-1 dietary energy level, suggesting that pacu favours protein as energy source. DE was the chief influence on whole body chemical composition. Minimum dietary protein requirement of pacu is 270 g kg-1, with an optimum CP : DE of 22.2 g MJ-1.
Resumo:
Haematopoiesis and blood cells` functions can be influenced by dietary concentration of nutrients. This paper studied the effects of dietary protein:energy ratio on the growth and haematology of pacu, Piaractus mesopotamicus. Fingerling pacu (15.5 +/- 0.4 g) were fed twice a day for 10 weeks until apparent saciety with diets containing 220, 260, 300, 340 or 380 g kg(-1) crude protein (CP) and 10.88, 11.72, 12.55, 13.39, 14.22 MJ kg(-1) digestible energy (DE) in a totally randomized experimental design, 5 x 5 factorial scheme (n=3). Weight gain and specific growth rate were affected (P < 0.05) by protein level only. Protein efficiency ratio decreased (P < 0.05) with increasing dietary protein at all levels of dietary energy. Daily feed intake decreased (P < 0.05) with increasing dietary energy. Mean corpuscular haemoglobin concentration was affected (P < 0.05) by DE and interaction between dietary CP and DE. Total plasma protein increased (P < 0.05) with dietary protein and energy levels. Plasma glucose decreased (P < 0.05) with increasing dietary protein. The CP requirement and optimum protein:energy ratio for weight gain of pacu fingerlings, determined using broken-line model, were 271 g kg(-1) and 22.18 g CP MJ(-1) DE respectively. All dietary CP and DE levels studied did not pose damages to fish health.