989 resultados para processing platform


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel architecture and its implementation for a versatile, miniaturised mote which can communicate concurrently using a variety of combinations of ISM bands, has increased processing capability, and interoperability with mainstream GSM technology. All these features are integrated in a small form factor platform. The platform can have many configurations which could satisfy a variety of applications’ constraints. To the best of our knowledge, it is the first integrated platform of this type reported in the literature. The proposed platform opens the way for enhanced levels of Quality of Service (QoS), with respect to reliability, availability and latency, in addition to facilitating interoperability and power reduction compared to existing platforms. The small form factor also allows potential of integration with other mobile platforms including smart phones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND:
tissue MicroArrays (TMAs) are a valuable platform for tissue based translational research and the discovery of tissue biomarkers. The digitised TMA slides or TMA Virtual Slides, are ultra-large digital images, and can contain several hundred samples. The processing of such slides is time-consuming, bottlenecking a potentially high throughput platform.
METHODS:
a High Performance Computing (HPC) platform for the rapid analysis of TMA virtual slides is presented in this study. Using an HP high performance cluster and a centralised dynamic load balancing approach, the simultaneous analysis of multiple tissue-cores were established. This was evaluated on Non-Small Cell Lung Cancer TMAs for complex analysis of tissue pattern and immunohistochemical positivity.
RESULTS:
the automated processing of a single TMA virtual slide containing 230 patient samples can be significantly speeded up by a factor of circa 22, bringing the analysis time to one minute. Over 90 TMAs could also be analysed simultaneously, speeding up multiplex biomarker experiments enormously.
CONCLUSIONS:
the methodologies developed in this paper provide for the first time a genuine high throughput analysis platform for TMA biomarker discovery that will significantly enhance the reliability and speed for biomarker research. This will have widespread implications in translational tissue based research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a hardware solution for network flow processing at full line rate. Advanced memory architecture using DDR3 SDRAMs is proposed to cope with the flow match limitations in packet throughput, number of supported flows and number of packet header fields (or tuples) supported for flow identifications. The described architecture has been prototyped for accommodating 8 million flows, and tested on an FPGA platform achieving a minimum of 70 million lookups per second. This is sufficient to process internet traffic flows at 40 Gigabit Ethernet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main motivation for the work presented here began with previously conducted experiments with a programming concept at the time named "Macro". These experiments led to the conviction that it would be possible to build a system of engine control from scratch, which could eliminate many of the current problems of engine management systems in a direct and intrinsic way. It was also hoped that it would minimize the full range of software and hardware needed to make a final and fully functional system. Initially, this paper proposes to make a comprehensive survey of the state of the art in the specific area of software and corresponding hardware of automotive tools and automotive ECUs. Problems arising from such software will be identified, and it will be clear that practically all of these problems stem directly or indirectly from the fact that we continue to make comprehensive use of extremely long and complex "tool chains". Similarly, in the hardware, it will be argued that the problems stem from the extreme complexity and inter-dependency inside processor architectures. The conclusions are presented through an extensive list of "pitfalls" which will be thoroughly enumerated, identified and characterized. Solutions will also be proposed for the various current issues and for the implementation of these same solutions. All this final work will be part of a "proof-of-concept" system called "ECU2010". The central element of this system is the before mentioned "Macro" concept, which is an graphical block representing one of many operations required in a automotive system having arithmetic, logic, filtering, integration, multiplexing functions among others. The end result of the proposed work is a single tool, fully integrated, enabling the development and management of the entire system in one simple visual interface. Part of the presented result relies on a hardware platform fully adapted to the software, as well as enabling high flexibility and scalability in addition to using exactly the same technology for ECU, data logger and peripherals alike. Current systems rely on a mostly evolutionary path, only allowing online calibration of parameters, but never the online alteration of their own automotive functionality algorithms. By contrast, the system developed and described in this thesis had the advantage of following a "clean-slate" approach, whereby everything could be rethought globally. In the end, out of all the system characteristics, "LIVE-Prototyping" is the most relevant feature, allowing the adjustment of automotive algorithms (eg. Injection, ignition, lambda control, etc.) 100% online, keeping the engine constantly working, without ever having to stop or reboot to make such changes. This consequently eliminates any "turnaround delay" typically present in current automotive systems, thereby enhancing the efficiency and handling of such systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent advances in technology and miniaturization of devices such as GPS or IMU, Unmanned Aerial Vehicles became a feasible platform for a Remote Sensing applications. The use of UAVs compared to the conventional aerial platforms provides a set of advantages such as higher spatial resolution of the derived products. UAV - based imagery obtained by a user grade cameras introduces a set of problems which have to be solved, e. g. rotational or angular differences or unknown or insufficiently precise IO and EO camera parameters. In this work, UAV - based imagery of RGB and CIR type was processed using two different workflows based on PhotoScan and VisualSfM software solutions resulting in the DSM and orthophoto products. Feature detection and matching parameters influence on the result quality as well as a processing time was examined and the optimal parameter setup was presented. Products of the both workflows were compared in terms of a quality and a spatial accuracy. Both workflows were compared by presenting the processing times and quality of the results. Finally, the obtained products were used in order to demonstrate vegetation classification. Contribution of the IHS transformations was examined with respect to the classification accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacings of various subjects generate new field ofstudy and research that help in advancing human knowledge. One of the latest of such fields is Neurotechnology, which is an effective amalgamation of neuroscience, physics, biomedical engineering and computational methods. Neurotechnology provides a platform to interact physicist; neurologist and engineers to break methodology and terminology related barriers. Advancements in Computational capability, wider scope of applications in nonlinear dynamics and chaos in complex systems enhanced study of neurodynamics. However there is a need for an effective dialogue among physicists, neurologists and engineers. Application of computer based technology in the field of medicine through signal and image processing, creation of clinical databases for helping clinicians etc are widely acknowledged. Such synergic effects between widely separated disciplines may help in enhancing the effectiveness of existing diagnostic methods. One of the recent methods in this direction is analysis of electroencephalogram with the help of methods in nonlinear dynamics. This thesis is an effort to understand the functional aspects of human brain by studying electroencephalogram. The algorithms and other related methods developed in the present work can be interfaced with a digital EEG machine to unfold the information hidden in the signal. Ultimately this can be used as a diagnostic tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors demonstrate four real-time reactive responses to movement in everyday scenes using an active head/eye platform. They first describe the design and realization of a high-bandwidth four-degree-of-freedom head/eye platform and visual feedback loop for the exploration of motion processing within active vision. The vision system divides processing into two scales and two broad functions. At a coarse, quasi-peripheral scale, detection and segmentation of new motion occurs across the whole image, and at fine scale, tracking of already detected motion takes place within a foveal region. Several simple coarse scale motion sensors which run concurrently at 25 Hz with latencies around 100 ms are detailed. The use of these sensors are discussed to drive the following real-time responses: (1) head/eye saccades to moving regions of interest; (2) a panic response to looming motion; (3) an opto-kinetic response to continuous motion across the image and (4) smooth pursuit of a moving target using motion alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulating spiking neural networks is of great interest to scientists wanting to model the functioning of the brain. However, large-scale models are expensive to simulate due to the number and interconnectedness of neurons in the brain. Furthermore, where such simulations are used in an embodied setting, the simulation must be real-time in order to be useful. In this paper we present NeMo, a platform for such simulations which achieves high performance through the use of highly parallel commodity hardware in the form of graphics processing units (GPUs). NeMo makes use of the Izhikevich neuron model which provides a range of realistic spiking dynamics while being computationally efficient. Our GPU kernel can deliver up to 400 million spikes per second. This corresponds to a real-time simulation of around 40 000 neurons under biologically plausible conditions with 1000 synapses per neuron and a mean firing rate of 10 Hz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2 of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2) units (6 of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.