949 resultados para preimplantation embryo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The embryonic developmental block occurs at the 8-cell stage in cattle and is characterized by a lengthening of the cell cycle and an increased number of embryos that stop development. The maternal-embryonic transition arises at the same stage resulting in the transcription of many genes. Gene expression studies during this stage may contribute to the understanding of the physiological mechanisms involved in the maternal-embryonic transition. Herein we identified genes differentially expressed between embryos with high or low developmental competence to reach the blastocyst stage using differential display PCR. Embryos were analysed according to developmental kinetics: fast cleavage embryos showing 8 cells at 48 h post insemination (hpi) with high potential of development (F8), and embryos with slow cleavage presenting 4 cells at 48 hpi (54) and 8 cells at 90 hpi (S8), both with reduced rates of development to blastocyst. The fluorescence DDPCR method was applied and allowed the recovery of 176 differentially expressed bands with similar proportion between high and low development potential groups (52% to F8 and 48% in S4 and S8 groups). A total of 27 isolated fragments were cloned and sequenced, confirming the expected primer sequences and allowing the identification of 27 gene transcripts. PI3KCA and ITM2B were chosen for relative quantification of mRNA using real-time PCR and showed a kinetic and a time-related pattern of expression respectively. The observed results suggest the existence of two different embryonic genome activation mechanisms: fast-developing embryos activate genes related to embryonic development, and slow-developing embryos activate genes related to cellular survival and/or death.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zum besseren Verständnis der epigenetischen Reprogrammierung nach der Befruchtung, wurde in der vorliegenden Studie unter Verwendung eines Interphase-FISH-Assays eine systematische Analyse des Replikationsverhaltens geprägter und nicht geprägter Chromosomenregionen in Präimplantationsembryonen der Maus durchgeführt. Dabei konnte erstmalig gezeigt werden, dass sowohl geprägte als auch nicht geprägte Chromosomen-regionen direkt nach der Befruchtung asynchron replizieren. Vier von fünf nicht geprägten Chromosomenregionen replizierten erst nach dem Zweizell-Embryostadium synchron. Eine asynchrone Replikation geprägter Regionen wurde während der gesamten Präimplantationsentwicklung und in differenzierten Zellen beobachtet. In Morula-Embryonen zeigten der in diesem Stadium nicht exprimierte Dlk1-Gtl2-Locus sowie der biallelisch exprimierte Igf2r-Locus jedoch eine Relaxation der asynchronen Replikation. In einem weiteren Projekt konnte mit Hilfe eines Multiplex-RT-PCR-Ansatzes die sensitive Detektion von multiplen Transkripten in einzelnen Zellen etabliert werden. Anschließend wurden Expressionsmuster von 17 für die epigenetische Reprogrammierung relevanten Entwicklungs-genen in Präimplantationsembryonen sowie in einzelnen Morula-Blastomeren analysiert. Der Transkriptionsfaktor Pou5f1 wurde in allen Präimplantationsembryonen und allen Morula-Blastomeren detektiert, was auf eine uniforme Reaktivierung der Pluripotenz hinweist. Dagegen variierte die mRNA-Expression verschiedener DNA-Cytosin-5-Methyltransferasen, 5-methyl-CpG-Bindeproteine sowie Enzyme der Basenexzisionsreparatur stark zwischen individuellen Zellen des gleichen Embryos und noch stärker zwischen Zellen verschiedener Embryonen. Diese Ergebnisse zeigen, dass sich das für die Reprogrammierungsmaschinerie kodierende Transkriptom zu bestimmten Entwicklungs-zeitpunkten zwischen einzelnen Blastomeren unterscheidet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seit der Geburt von Louise J. Brown (1978) als erstem künstlich erzeugtem Kind hat sich die Nachfrage nach assistierten Reproduktionstechniken (ART) stark erhöht. Der Anteil der nach In-vitro-Fertilisation (IVF) oder Intrazytoplasmatischer Spermieninjektion (ICSI) geborenen Kinder macht mittlerweile abhängig vom betrachteten Industrieland zwischen 1-4% an der Gesamtgeburtenzahl aus. In zahlreichen Studien korreliert eine erhöhte Prävalenz für seltene Imprinting-Erkrankungen, wie z.B. Beckwith-Wiedemann oder Angelman-Syndrom, mit der Geburt nach assistierten Reproduktionstechniken. Es ist bekannt, dass die medizinischen Interventionen zur Behandlung von Sub- und Infertilität in sehr sensitive Phasen der epigenetischen Reprogrammierung des Embryos und der Keimzellen eingreifen. In der vorliegenden Arbeit wurde untersucht, ob die ovarielle Stimulation einen Einfluss auf die epigenetische Integrität von geprägten Genen in murinen Präimplantationsembryonen hat. Die in diesem Zusammenhang entwickelte digitale Bisulfitpyrosequenzierung gewährleistet die Analyse der DNA-Methylierung auf Einzelallelebene durch eine adäquate Verdünnung der Probe im Vorfeld der PCR. Die ovarielle Induktion führte zu einem erhöhten Rate an Epimutationen des paternalen H19-Allels, sowie des maternalen Snrpn-Allels. Zudem konnte festgestellt werden, dass die Expression von drei potentiellen Reprogrammierungsgenen (Apex1, Polb, Mbd3) in Embryonen aus hormonell stimulierten Muttertieren dereguliert ist. Whole-Mount Immunfluoreszenzfärbungen für APEX1 korrelierten dessen differentielle Genexpression mit dem Proteinlevel. Anzeichen früher apoptotischer Vorgänge äußerten sich in Embryonen aus hormonell induzierten Muttertieren in der hohen Rate an Embryonen, die keines der drei Transkripte exprimierten oder weniger APEX1-positive Blastomeren aufwiesen.In einer weiteren Fragestellung wurde untersucht, ob die Kryokonservierung muriner Spermatozoen den epigenetischen Status geprägter Gene in den Keimzellen beeinflusst. Die Analyse von F1-Zweizellembryonen, die durch IVF mit den jeweiligen Spermatozoen eines Männchens generiert wurden, diente der Aufklärung möglicher paternaler Transmissionen. Insgesamt konnten keine signifikanten Auswirkungen der Kryokonservierung auf den epigenetischen Status in Spermatozoen und F1-Embryonen ermittelt werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of growth hormone (GH) in embryonic growth is controversial, yet preimplantation embryos express GH, insulin-like growth factor I (IGF-I) and their receptors. In this study, addition of bovine GH doubled the proportion of two-cell embryos forming blastocysts and increased by about 25% the number of cells in those blastocysts with a concentration-response curve showing maximal activity at 1 pg bovine GH ml(-1), with decreasing activity at higher and lower concentrations. GH increased the number of cells in the trophectoderm by 25%, but did not affect the inner cell mass of blastocysts. Inhibition of cell proliferation by anti-GH antiserum indicated that GH is a potent autocrine or paracrine regulator of the number of trophectoderm cells in vivo. Type 1 IGF receptors (IGF1R) were localized to cytoplasmic vesicles and plasma membrane in the apical domains of uncompacted and compacted eight-cell embryos, but were predominantly apparent in cytoplasmic vesicles of the trophectoderm cells of the blastocyst, similar to GH receptors. Studies using alphaIR3 antiserum which blocks ligand activation of IGF1R, showed that IGF1R participate in the autocrine or paracrine regulation of the number of cells in the inner cell mass by an endogenous IGF-I-IGF1R pathway. However, alphaIR3 did not affect GH stimulation of the number of trophectoderm cells. Therefore, CH does not use secondary actions via embryonic IGF-I to modify the number of blastocyst cells. This result indicates that GH and IGF-I act independently. GH may selectively regulate the number of trophectoderm cells and thus implantation and placental growth. Embryonic GH may act in concert with IGF-I, which stimulates proliferation in the inner cell mass, to optimize blastocyst development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of adult-onset diseases such as type II diabetes, obesity and cardiovascular disease is traditionally attributed to adult lifestyle characteristics such as a lack of physical exercise, poor diet and smoking. However, evidence from both human and animal model studies has demonstrated that environmental factors such as an imbalance or reduction in maternal nutrition during gestation can have adverse effects on offspring metabolism and cardiovascular health. The severity and nature of the phenotypic changes induced in offspring is influenced by the period of gestation manipulated. In particular, the mammalian preimplantation embryo in different animal models displays particular sensitivity to environmental factors, either in vivo (maternal diet) or in vitro (embryo culture) that is associated with the onset of cardiovascular dysfunction in adult life. The detailed mechanisms by which environmental conditions can alter postnatal cardiovascular physiology are poorly understood. However, various factors including endothelial function, vascular responsiveness, the renin-angiotensin system, kidney structure and early postnatal growth dynamics have all been recognize as potential contributors. Here, we review the relationship between preimplantation embryo environment and postnatal cardiovascular disease risk, and consider biochemical, molecular, genetic and physiological pathways implicated in this association. © 2009 The Authors Journal compilation © 2009 Anatomical Society of Great Britain and Ireland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poor maternal nutrition during pregnancy can alter postnatal phenotype and increase susceptibility to adult cardiovascular and metabolic diseases. However, underlying mechanisms are largely unknown. Here, we show that maternal low protein diet (LPD), fed exclusively during mouse preimplantation development, leads to offspring with increased weight from birth, sustained hypertension, and abnormal anxiety-related behavior, especially in females. These adverse outcomes were interrelated with increased perinatal weight being predictive of later adult overweight and hypertension. Embryo transfer experiments revealed that the increase in perinatal weight was induced within blastocysts responding to preimplantation LPD, independent of subsequent maternal environment during later pregnancy. We further identified the embryo-derived visceral yolk sac endoderm (VYSE) as one mediator of this response. VYSE contributes to fetal growth through endocytosis of maternal proteins, mainly via the multiligand megalin (LRP2) receptor and supply of liberated amino acids. Thus, LPD maintained throughout gestation stimulated VYSE nutrient transport capacity and megalin expression in late pregnancy, with enhanced megalin expression evident even when LPD was limited to the preimplantation period. Our results demonstrate that in a nutrient-restricted environment, the preimplantation embryo activates physiological mechanisms of developmental plasticity to stablize conceptus growth and enhance postnatal fitness. However, activation of such responses may also lead to adult excess growth and cardiovascular and behavioral diseases. © 2008 by the Society for the Study of Reproduction, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Ped (preimplantation embryo development) gene, whose product is Qa-2 protein, is correlated with a faster rate of preimplantation development (Ped fast phenotype) in mice that express Qa-2 protein compared with mice with an absence of Qa-2 protein (Ped slow phenotype). In the current study, we have used two congenic mouse strains differentially expressing the Ped gene, strain B6.K1 (Ped slow; Qa-2 negative) and strain B6.K2 (Ped fast; Qa-2 positive), to investigate the effects of Ped gene expression on postnatal growth profiles, systolic blood pressure and adult organ allometry. At birth, B6.K1 mice were moderately lighter than B6.K2 mice. B6.K1 mice became heavier during postnatal life (P

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Superimposed on the activation of the embryonic genome in the preimplantation mouse embryo is the formation of a transcriptionally repressive state during the two-cell stage. This repression appears mediated at the level of chromatin structure, because it is reversed by inducing histone hyperacetylation or inhibiting the second round of DNA replication. We report that of more than 200 amplicons analyzed by mRNA differential display, about 45% of them are repressed between the two-cell and four-cell stages. This repression is scored as either a decrease in amplicon expression that occurs between the two-cell and four-cell stages or on the ability of either trichostatin A tan inhibitor of histone deacetylases) or aphidicolin tan inhibitor of replicative DNA polymerases) to increase the level of amplicon expression. Results of this study also indicate that about 16% of the amplicons analyzed likely are novel genes whose sequence doesn't correspond to sequences in the current databases, whereas about 20% of the sequences expressed during this transition likely are repetitive sequences. Lastly, inducing histone hyperacetylation in the two-cell embryos inhibits cleavage to the four-cell stage. These results suggest that genome activation is global and relatively promiscuous and that a function of the transcriptionally repressive state is to dictate the appropriate profile of gene expression that is compatible with further development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the past years, research in embryo technologies is moving to the establishment of preimplantation genetic typing or also denominated preimplantation genetic diagnosis (PGD). The objectives of these tests are the prevention of genetic diseases transmission and the prediction of phenotypic characteristics, as well as sex determination, genetic disorders and productive and reproductive profiles, prior to the embryo transfer or freezing, during early stages of development. This paper points out the state-of-the-art of PGD, mainly in cattle and discuss the perspectives of multiloci genetic analysis of embryos. (C) 2001 by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On 1 January 2010, the Assisted Reproductive Treatment Act 2008 (Vic) came into force. The legislation was the outcome of a detailed review and consultation process undertaken by the Victorian Law Reform Commission. Arguably, the change to the regulatory framework represents a significant shift in policy compared to previous regulatory approaches on this topic in Victoria. This article considers the impact of the new legislation on eligibility for reproductive treatments, focusing on the accessibility of such services for the purpose of creating a “saviour sibling”. It also highlights the impact of the Victorian regulatory body’s decision to abolish its regulatory policies on preimplantation genetic diagnosis and preimplantation tissue-typing, concluding that the regulatory approach in relation to these latter issues is similar to other Australian jurisdictions where such practices are not addressed by a statutory framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The in vitro development of hamster preimplantation embryos is supported by non-glucose energy substrates. To investigate the importance of embryonic metabolism, influence of succinate and malate on the development of hamster 8-cell embryos to blastocysts was examined using a chemically defined protein-free modified hamster embryo culture medium-2 (HECM-2m). There was a dose-dependent influence of succinate on blastocyst development; 0.5 mM succinate was optimal (85.1% ± 3.9 vs. 54.5% ± 3.5). In succinate-supplemented HECM-2m, blastocyst development was reduced by omission of lactate (68.5% ± 7.2), but not pyruvate (85.8% ± 6.2) or glutamine (84.1% ± 2.1). Succinate along with either glutamine or lactate or pyruvate poorly supported blastocyst development (28%-58%). Malate also stimulated blastocyst development; 0.01 mM malate was optimal (86.3% ± 2.8). Supplementation of both succinate and malate to HECM-2m supported maximal (100%) blastocyst development, which was inhibited 4-fold by the addition of glucose/phosphate. The mean cell numbers (MCN) of blastocysts cultured in succinate-supplemented HECM-2m was higher (28.3 ± 1.1) than it was for those cultured in the absence of glutamine or pyruvate (range 20-24). The MCN was the highest (33.4 ± 1.6) for blastocysts cultured in succinate-malate-supplemented HECM-2m followed by those in succinate (28.3 ± 1.1) or malate (24.7 ± 0.5) supplemented HECM-2m. Embryo transfer experiments showed that 29.8% (±4.5) of transferred blastocysts cultured in succinate-malate-supplemented HECM-2m produced live births, similar (P > 0.1) to the control transfers of freshly recovered 8-cells (33.5% ± 2.0) or blastocysts (28.9% ± 3.0). These data show that supplementation of succinate and malate to HECM-2m supports 100% development of hamster 8-cell embryos to high quality viable blastocysts and that non-glucose oxidizable energy substrates are the most preferred components in hamster embryo culture medium. Mol. Reprod. Dev. 47:440-447, 1997. © 1997 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of preimplantation embryos and blastocyst implantation are critical early events in the establishment of pregnancy. In primates, embryonic signals, secreted during the peri-implantation period, are believed to play a major role in the regulation of embryonic differentiation and implantation. However, only limited progress has been made in the molecular and functional characterization of embryonic signals, partly due to severe paucity of primate embryos and the lack of optimal culture conditions to obtain viable embryo development. Two embryonic (endocrine) secretions, i.e. chorionic gonadotrophin (CG) and gonadotrophin releasing hormone (GnRH) are being studied. This article reviews the current status of knowledge on the recovery and culture of embryos, their secretion of CG, GnRH and other potential endocrine signals and their regulation and physiological role(s) during the peri-implantation period in primates, including humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.