917 resultados para predictive compensation
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The main scope of this work is the implementation of an MPC that integrates the control and the economic optimization of the system. The two problems are solved simultaneously through the modification of the control cost function that includes an additional term related to the economic objective. The optimizing MPC is based on a quadratic program (QP) as the conventional MPC and can be solved with the available QP solvers. The method was implemented in an industrial distillation system, and the results show that the approach is efficient and can be used, in several practical cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A model predictive controller (MPC) is proposed, which is robustly stable for some classes of model uncertainty and to unknown disturbances. It is considered as the case of open-loop stable systems, where only the inputs and controlled outputs are measured. It is assumed that the controller will work in a scenario where target tracking is also required. Here, it is extended to the nominal infinite horizon MPC with output feedback. The method considers an extended cost function that can be made globally convergent for any finite input horizon considered for the uncertain system. The method is based on the explicit inclusion of cost contracting constraints in the control problem. The controller considers the output feedback case through a non-minimal state-space model that is built using past output measurements and past input increments. The application of the robust output feedback MPC is illustrated through the simulation of a low-order multivariable system.
Resumo:
This paper concern the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces Optimal targets for the system inputs and for Outputs that Should be dynamically implemented by the MPC controller. This paper is based oil a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based oil the work of Gonzalez et at. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new control for is obtained by defining ail extended control objective that includes input targets and zone controller the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes Lit the end of the control horizon are softened,, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed,approaches to a distillation column of the oil refining industry.
Resumo:
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil re. ning industry illustrates the performance of the proposed strategy.
Resumo:
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary patterns. Here, we investigate how the performance of this network on pattern recognition task is altered when neurons are removed and the weights of the synapses corresponding to these deleted neurons are divided among the remaining synapses. Five distinct ways of distributing such weights are evaluated. We speculate how this numerical work about synaptic compensation may help to guide experimental studies on memory rehabilitation interventions.
Resumo:
The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.
Resumo:
We find that prospect theory behavior is significantly more prevalent than utility theory behavior in experiments involving multiple, real items. In the experiments, subjects were endowed with three items and asked the minimum payments they required to be willing to return one, two, or three of them. Our key observation is that prospect theory implies concavity of compensation demanded, whereas utility theory implies convexity. We examine whether the compensation demanded is convex or concave in the number of items returned. (JEL C91).
Resumo:
1. Although population viability analysis (PVA) is widely employed, forecasts from PVA models are rarely tested. This study in a fragmented forest in southern Australia contrasted field data on patch occupancy and abundance for the arboreal marsupial greater glider Petauroides volans with predictions from a generic spatially explicit PVA model. This work represents one of the first landscape-scale tests of its type. 2. Initially we contrasted field data from a set of eucalypt forest patches totalling 437 ha with a naive null model in which forecasts of patch occupancy were made, assuming no fragmentation effects and based simply on remnant area and measured densities derived from nearby unfragmented forest. The naive null model predicted an average total of approximately 170 greater gliders, considerably greater than the true count (n = 81). 3. Congruence was examined between field data and predictions from PVA under several metapopulation modelling scenarios. The metapopulation models performed better than the naive null model. Logistic regression showed highly significant positive relationships between predicted and actual patch occupancy for the four scenarios (P = 0.001-0.006). When the model-derived probability of patch occupancy was high (0.50-0.75, 0.75-1.00), there was greater congruence between actual patch occupancy and the predicted probability of occupancy. 4. For many patches, probability distribution functions indicated that model predictions for animal abundance in a given patch were not outside those expected by chance. However, for some patches the model either substantially over-predicted or under-predicted actual abundance. Some important processes, such as inter-patch dispersal, that influence the distribution and abundance of the greater glider may not have been adequately modelled. 5. Additional landscape-scale tests of PVA models, on a wider range of species, are required to assess further predictions made using these tools. This will help determine those taxa for which predictions are and are not accurate and give insights for improving models for applied conservation management.
Resumo:
We employ comprehensive linked employer-employee data for Brazil to analyze wage determinants and compare results to Abowd et al. (2001) for French and U.S. manufacturing. While returns to human capita in Brazilian manufacturing exceed those of the other countries, occupation and gender differentials are similar. The worker-characteristics component accounts for much of the greater wage inequality in Brazil, but the establishment-fixed component has scant explanatory power. Thus, firm-or industry-level factors offer little scope for explaining the differences in wage inequality. Brazil`s wage structure resembles that of France, a country with some similarity in labor market institutions.
Resumo:
Obesity affects aspects of glucose homeostasis such as insulin secretion and insulin sensitivity. Hormones secreted by adipocytes like leptin mediate the metabolic consequences of obesity. Incretin hormones like glucagon-like peptide-1 (GLP-1) increase insulin secretion in response to changes in blood glucose concentration and have been proposed to regulate insulin secretion in fasting, overweight dogs. The aim of this study was to examine hormonal mechanisms by which adiposity alters glucose homeostasis, plasma insulin concentration, and insulin sensitivity in spontaneously overweight dogs.
Resumo:
Background. The am of this study was to determine the predictive value for malignancy of microcalcifications determined by ultrasonography in thyroid nodules. Methods. One hundred seventy-seven nodules were prospectively studied by ultrasonography and compared with their fine-needle aspirative biopsy. The association between the presence and type of calcification and cytologic findings was verified through the chi-square test or likelihood ratio. Results. Thirty nodules showed calcification, of which 17 had fine calcifications, 3 had fine and gross calcifications, and 10 had only coarse calcification. Seven (41.18%) of 17 fine calcified nodules were malignant on cytology, 8 (47.06%) were benign, 1 (5,88%) was indeterminate, and 1 was suspect for malignancy. We found statistical significance between the presence of fine calcifications and malignancy (p =.001) and, in the 13 malignant nodule group, 8 (61.50%) had fine calcifications. Conclusion. This study suggests that microcalcifications were highly specific for malignancy and were present in 61% of the malignant nodules. (c) 2008 Wiley Periodicals, Inc.