937 resultados para power electronic modules
Resumo:
This paper presents a compact integrated power electronic module (IPEM) which seeks to overcome the volumetric power density limitations of conventional packaging technologies. A key innovation has been the development of a substrate sandwich structure which permits double side cooling of the embedded dies whilst controlling the mechanical stresses both within the module and at the heat exchanger interface. A 3-phase inverter module has been developed, integrating the sandwich structures with high efficiency impingement coolers, delink capacitance and gate drive units. Full details of the IPEM construction and electrical evaluation are given in the paper. © 2007 IEEE.
Resumo:
Modeling and numerical analysis of diamond m-i-p+ diode have been performed for static and transient analysis using TCAD Sentaurus platform. The simulation results are compared with experimental measurements. Prediction of transient turn-off characteristics of diamond m-i-p+ diode at high temperature is performed for the first time. It was found that unlike conventional Si diode, peak reverse current in diamond m-i-p+ diode reduces with increasing temperature while on-state voltage drop increases. © 2011 IEEE.
Resumo:
This paper presents the steps and the challenges for implementing analytical, physics-based models for the insulated gate bipolar transistor (IGBT) and the PIN diode in hardware and more specifically in field programmable gate arrays (FPGAs). The models can be utilised in hardware co-simulation of complex power electronic converters and entire power systems in order to reduce the simulation time without compromising the accuracy of results. Such a co-simulation allows reliable prediction of the system's performance as well as accurate investigation of the power devices' behaviour during operation. Ultimately, this will allow application-specific optimisation of the devices' structure, circuit topologies as well as enhancement of the control and/or protection schemes.
Resumo:
Power electronic modules distinguish themselves from other modules by their high power operation. These modules are used extensively in high power application markets such as aerospace, automotive, industrial and traction and drives. This paper discusses typical packaging technologies for power electronics modules. It also discusses the latest results from a UK research project investigating the physics-of-failure approach to reliability analysis and predictions for power modules. An integrated design enviroment for incorporating of affects of uncertainty into the design environment was outlined.
Resumo:
This paper describes a prognostic method which combines the physics of failure models with probability reasoning algorithm. The measured real time data (temperature vs. time) was used as the loading profile for the PoF simulations. The response surface equation of the accumulated plastic strain in the solder interconnect in terms of two variables (average temperature, and temperature amplitude) was constructed. This response surface equation was incorporated into the lifetime model of solder interconnect, and therefore the remaining life time of the solder component under current loading condition was predicted. The predictions from PoF models were also used to calculate the conditional probability table for a Bayesian Network, which was used to take into account of the impacts of the health observations of each product in lifetime prediction. The prognostic prediction in the end was expressed as the probability for the product to survive the expected future usage. As a demonstration, this method was applied to an IGBT power module used for aircraft applications.
Resumo:
Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring.
Resumo:
This paper presents an improved analysis of a novel Programmable Power-factor-corrected-Based Hybrid Multipulse Power Rectifier (PFC-HMPR) for utility interface of power electronic converters. The proposed hybrid multipulse rectifier is composed of an ordinary three-phase six-pulse diode-bridge rectifier (Graetz bridge) with a parallel connection of single-phase switched converters in each three-phase rectifier leg. In this paper, the authors present a complete discussion about the controlled rectifiers' power contribution and also a complete analysis concerning the total harmonic distortion of current that can be achieved when the proposed converter operates as a conventional 12-pulse rectifier. The mathematical analysis presented in this paper corroborate, with detailed equations, the experimental results of two 6-kW prototypes implemented in a laboratory.
Resumo:
In this paper it is proposed a novel hybrid three-phase rectifier capable to achieve high input power factor (PF), and low total harmonic distortion in the input currents (THDI). The proposed hybrid high power rectifier is composed by a standard three-phase 6-pulses diode rectifier (Graetz bridge) with a parallel connection of single-phase Boost rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this paper describes its principles of operation, with detailed experimental results and discussions on power rating of the required Boost converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Boost converters, making the proposed solution economically viable for very high power installations, with fast pay back of the investment. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing de-link. A prototype rated at 6 kW has been implemented in laboratory and fully demonstrated its operation, performance and feasibility to high power applications. © 2005 IEEE.