995 resultados para power cables
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
Modal flexibility is a widely accepted technique to detect structural damage using vibration characteristics. Its application to detect damage in long span large diameter cables such as those used in suspension bridge main cables has not received much attention. This paper uses the modal flexibility method incorporating two damage indices (DIs) based on lateral and vertical modes to localize damage in such cables. The competency of those DIs in damage detection is tested by the numerically obtained vibration characteristics of a suspended cable in both intact and damaged states. Three single damage cases and one multiple damage case are considered. The impact of random measurement noise in the modal data on the damage localization capability of these two DIs is next examined. Long span large diameter cables are characterized by the two critical cable parameters named bending stiffness and sag-extensibility. The influence of these parameters in the damage localization capability of the two DIs is evaluated by a parametric study with two single damage cases. Results confirm that the damage index based on lateral vibration modes has the ability to successfully detect and locate damage in suspended cables with 5% noise in modal data for a range of cable parameters. This simple approach therefore can be extended for timely damage detection in cables of suspension bridges and thereby enhance their service during their life spans.
Resumo:
The telecommunication, broadcasting and other instrumented towers carry power and/or signal cables from their ground end to their upper regions. During a direct hit to the tower, significant induction can occur to these mounted cables. In order to provide adequate protection to the equipments connected to them, protection schemes have been evolved in the literature. Development of more effective protection schemes requires a quantitative knowledge on various parameters. However, such quantitative knowledge is difficult to find at present. Amongst several of these aspects, the present work aims to investigate on the two important aspects: (i) what would be the nature of the induced currents and (ii) what will be the current sharing if as per the practice, the sheath of the cable is connected to the down conductor/tower. These aspects will be useful in design of protection schemes and also in analyzing the field structure around instrumented towers.
Resumo:
Classic flutter analysis models an aerofoil as a two degree-of-freedom rigid body supported by linear and torsional springs, which represent the bending and torsional stiffness of the aerofoil section. In this classic flutter model, no energy transfer or dissipation can occur in the span-wise direction of the aerofoil section. However, as the aspect ratio of an aerofoil section increases, this span-wise energy transfer - in the form of travelling waves - becomes important to the overall system dynamics. This paper extends the classic flutter model to include travelling waves in the span-wise direction. Namely, wave dispersion and power flow analysis of an infinite, aerofoil-shaped beam, subject to bending, torsion, tension and a constant wind excitation, is used to investigate the overall system stability. Examples of potential applications for these high aspect ratio aerofoil sections include high-altitude balloon tethers, towed cables, offshore risers and mooring lines.
Resumo:
The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.
Resumo:
This paper focus on the problem of locating single-phase faults in mixed distribution electric systems, with overhead lines and underground cables, using voltage and current measurements at the sending-end and sequence model of the network. Since calculating series impedance for underground cables is not as simple as in the case of overhead lines, the paper proposes a methodology to obtain an estimation of zero-sequence impedance of underground cables starting from previous single-faults occurred in the system, in which an electric arc occurred at the fault location. For this reason, the signal is previously pretreated to eliminate its peaks voltage and the analysis can be done working with a signal as close as a sinus wave as possible
Resumo:
We are developing two-layered Yttrium Barium Copper Oxide (YBCO) thin film structures for energy efficient data links for superconducting electronics and present the results of their property measurements. High temperature superconductors (HTS) are advantageous for the implementation of energy-efficient cables interconnecting low temperature superconductor-based circuits and other cryogenic electronics circuits at higher temperature stages. The advantages of the HTS cables come from their low loss and low dispersion properties, allowing ballistic transfer of low power signals with very high bandwidth, low heat conduction and negligible inter-line crosstalk. The microstrip line cable geometry for typical materials is a two-layered film, in which the two superconducting layers are separated by an insulation layer with a minimized permittivity. We have made a proof of concept design of two YBCO films grown by pulsed laser deposition and then assembled into a sandwich with uniform insulating interlayer of tens of micrometers thick. We report on results obtained from such systems assembled in different ways. Structural and electromagnetic properties have been examined on individual films and on the corresponding sandwich composite. © 2013 IEEE.
Resumo:
The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.
Resumo:
The application of high-power voltage-source converters (VSCs) to multiterminal dc networks is attracting research interest. The development of VSC-based dc networks is constrained by the lack of operational experience, the immaturity of appropriate protective devices, and the lack of appropriate fault analysis techniques. VSCs are vulnerable to dc-cable short-circuit and ground faults due to the high discharge current from the dc-link capacitance. However, faults occurring along the interconnecting dc cables are most likely to threaten system operation. In this paper, cable faults in VSC-based dc networks are analyzed in detail with the identification and definition of the most serious stages of the fault that need to be avoided. A fault location method is proposed because this is a prerequisite for an effective design of a fault protection scheme. It is demonstrated that it is relatively easy to evaluate the distance to a short-circuit fault using voltage reference comparison. For the more difficult challenge of locating ground faults, a method of estimating both the ground resistance and the distance to the fault is proposed by analyzing the initial stage of the fault transient. Analysis of the proposed method is provided and is based on simulation results, with a range of fault resistances, distances, and operational conditions considered.