996 resultados para population bottleneck
Resumo:
Major histocompatibility complex (MHC) genes encode cell surface proteins whose function is to bind and present intracellularly processed peptides to T lymphocytes of the immune system. Extensive MHC diversity has been documented in many species and is maintained by some form of balancing selection. We report here that both European and North American populations of moose (Alces alces) exhibit very low levels of genetic diversity at an expressed MHC class II DRB locus. The observed polymorphism was restricted to six amino acid substitutions, all in the peptide binding site, and four of these were shared between continents. The data imply that the moose have lost MHC diversity in a population bottleneck, prior to the divergence of the Old and New World subspecies. Sequence analysis of mtDNA showed that the two subspecies diverged at least 100,000 years ago. Thus, viable moose populations with very restricted MHC diversity have been maintained for a long period of time. Both positive selection for polymorphism and intraexonic recombination have contributed to the generation of MHC diversity after the putative bottleneck.
Resumo:
Both long-term environmental changes such as those driven by the glacial cycles and more recent anthropogenic impacts have had major effects on the past demography in wild organisms. Within species, these changes are reflected in the amount and distribution of neutral genetic variation. In this thesis, mitochondrial and microsatellite DNA was analysed to investigate how environmental and anthropogenic factors have affected genetic diversity and structure in four ecologically different animal species. Paper I describes the post-glacial recolonisation history of the speckled-wood butterfly (Pararge aegeria) in Northern Europe. A decrease in genetic diversity with latitude and a marked population structure were uncovered, consistent with a hypothesis of repeated founder events during the postglacial recolonisation. Moreover, Approximate Bayesian Computation analyses indicate that the univoltine populations in Scandinavia and Finland originate from recolonisations along two routes, one on each side of the Baltic. Paper II aimed to investigate how past sea-level rises affected the population history of the convict surgeonfish (Acanthurus triostegus) in the Indo-Pacific. Assessment of the species’ demographic history suggested a population expansion that occurred approximately at the end of the last glaciation. Moreover, the results demonstrated an overall lack of phylogeographic structure, probably due to the high dispersal rates associated with the species’ pelagic larval stage. Populations at the species’ eastern range margin were significantly differentiated from other populations, which likely is a consequence of their geographic isolation. In Paper III, we assessed the effect of human impact on the genetic variation of European moose (Alces alces) in Sweden. Genetic analyses revealed a spatial structure with two genetic clusters, one in northern and one in southern Sweden, which were separated by a narrow transition zone. Moreover, demographic inference suggested a recent population bottleneck. The inferred timing of this bottleneck coincided with a known reduction in population size in the 19th and early 20th century due to high hunting pressure. In Paper IV, we examined the effect of an indirect but well-described human impact, via environmental toxic chemicals (PCBs), on the genetic variation of Eurasian otters (Lutra lutra) in Sweden. Genetic clustering assignment revealed differentiation between otters in northern and southern Sweden, but also in the Stockholm region. ABC analyses indicated a decrease in effective population size in both northern and southern Sweden. Moreover, comparative analyses of historical and contemporary samples demonstrated a more severe decline in genetic diversity in southern Sweden compared to northern Sweden, in agreement with the levels of PCBs found.
Resumo:
The advent of next-generation sequencing has significantly reduced the cost of obtaining large-scale genetic resources, opening the door for genomic studies of non-model but ecologically interesting species. The shift in mating system, from outcrossing to selfing, has occurred thousands of times in angiosperms and is accompanied by profound changes in the population genetics and ecology of a species. A large body of work has been devoted to understanding why the shift occurs and the impact of the shift on the genetics of the resulting selfing populations, however, the causes and consequences of the transition to selfing involve a complicated interaction of genetic and demographic factors which are difficult to untangle. Abronia umbellata is a Pacific coastal dune endemic which displays a striking shift in mating system across its geographic range, with large-flowered outcrossing populations south of San Francisco and small-flowered selfing populations to the north. Abronia umbellata is an attractive model system for the study of mating system transitions because the shift appears to be recent and therefore less obscured by post-shift processes, it has a near one-dimensional geographic range which simplifies analysis and interpretation, and demographic data has been collected for many of the populations. In this study, we generated transcriptome-level data for 12 plants including individuals from both subspecies, along with a resequencing study of 48 individuals from populations across the range. The genetic analysis revealed a recent transition to selfing involving a drastic reduction in genetic diversity in the selfing lineage, potentially indicative of a recent population bottleneck and a transition to selfing due to reproductive assurance. Interestingly, the genetic structure of the populations was not coincident with the current subspecies demarcation, and two large-flowered populations were classified with the selfing subspecies, suggesting a potential need for re-evaluation of the current subspecies classification. Our finding of low diversity in selfing populations may also have implications for the conservation value of the threatened selfing subspecies.
Resumo:
The South American fur seal, Arctocephalus australis, was one of the earliest otariid seals to be exploited by humans: at least 6000 years ago on the Atlantic coast and 4000 on the Pacific coast of South America. More than 750,000 fur seals were killed in Uruguay until 1991. However, a climatological phenomenon-the severe 1997-1998 El Nino Southern Oscillation (ENSO)-was responsible for the decline of 72% Of the Peruvian fur seal population due to starvation as a consequence of warming of sea-surface temperatures and primary productivity reduction. Currently, there is no precise information on global population size or on the species` conservation status. The present study includes the first bottleneck test for the Pacific and Atlantic populations of A. australis based on the analysis of seven microsatellite loci. Genetic bottleneck compromises the evolutionary potential of a population to respond to environmental changes. The perspective becomes even more alarming due to current global warming models that predict stronger and more frequent ENSO events in the future. Our analysis found moderate support for deviation from neutrality-equilibrium for the Pacific population of fur seals and none for the Atlantic population. This difference among population reflects different demographic histories, and is consistent with a greater reduction in population size in the Pacific. Such an event could be a result of the synergic effects of recurrent ENSO events and the anthropogenic impact (sealing and prey overfishing) on this population.
Resumo:
An analysis of Y-chromosomal haplotypes in several European populations reveals an almost monomorphic pattern in the Finns, whereas Y-chromosomal diversity is significantly higher in other populations. Furthermore, analyses of nucleotide positions in the mitochondrial control region that evolve slowly show a decrease in genetic diversity in Finns. Thus, relatively few men and women have contributed the genetic lineages that today survive in the Finnish population. This is likely to have caused the so-called "Finnish disease heritage"-i.e., the occurrence of several genetic diseases in the Finnish population that are rare elsewhere. A preliminary analysis of the mitochondrial mutations that have accumulated subsequent to the bottleneck suggests that it occurred about 4000 years ago, presumably when populations using agriculture and animal husbandry arrived in Finland.
Resumo:
The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup - B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs – B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations.
Resumo:
The anadromous Chinese sturgeon (Acipenser sinensis), mainly endemic to the Yangtze River in China, is an endangered fish species. The natural population has declined since the Gezhouba Dam blocked its migratory route to the spawning grounds in 1981. In the near future, the completion of the Three Gorges Dam, the world's largest hydroelectric project, may further impact this species by altering the water flow of the Yangtze River. Little is currently known about the population genetic structure of the Chinese sturgeon. In this study, DNA sequence data were determined from the control region (D-loop) of the mitochondrial genome of adult sturgeons (n = 106) that were collected between 1995-2000. The molecular data were used to investigate genetic variation, effective female population size and population history of the Chinese sturgeon in the Yangtze River. Our results indicate that the reduction in abundance did not change genetic variation of the Chinese sturgeon, and that the population underwent an expansion in the past. AMOVA analysis indicated that 98.7% of the genetic variability occurred within each year's spawning populations, the year of collection had little influence on the diversity of annual temporary samples. The relative large effective female population size (N-ef) indicates that good potential exists for the recovery of this species in the future. Strikingly, the ratio of N-ef to the census female population size (N-f) is unusually high (0.77-0.93). This may be the result of a current bottleneck in the population of the Chinese sturgeon that is likely caused by human intervention.
Resumo:
The population genetic structure of the crimson snapper Lutjanus erythropterus in East Asia was examined with a 427-bp hypervariable portion of the mtDNA control region. A total of 262 samples were collected and 75 haplotypes were obtained. Neutrality tests (Tajima's and Fu's) suggested that Lutjanus erythropterus in East Asia had experienced a bottleneck followed by population expansion since the late Pleistocene. Despite the low phylogeographic structures in mtDNA haplotypes, a hierarchical examination of populations in 11 localities from four geographical regions using analysis of molecular variance (AMOVA) indicated significant genetic differentiation among regions (Phi(CT) = 0.08564, p < 0.01). Limited gene flow between the eastern region (including a locality in the western Pacific Ocean and two localities in the East Sea) and three geographic regions of the South China Sea largely contributed to the genetic subdivision. However, comparisons among three geographic regions of the South China Sea showed little to no genetic difference. Populations of Lutjanus erythropterus in East Asia are inferred to be divided into two major groups: an eastern group, including populations of the western Pacific Ocean and the East Sea, and a South China Sea group, consisting of populations from northern Malaysia to South China. The results suggest that fishery management should reflect the genetic differentiation and diversity in East Asia. (c) 2006 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
1. Complete sequences of 1140 base pair of the cytochrome b gene from 133 specimens were obtained from nine localities including the inflow drainage system, isolated lakes and outflow drainage system in Qinghai-Tibetan Plateau to assess genetic diversity and to infer population histories of the freshwater fish Schizopygopsis pylzovi.2. Nucleotide diversities (pi) were moderate (0.0024-0.0045) in populations from the outflow drainage system and Tuosuo Lake, but low (0.0018-0.0021) in populations from Qiadam Basin. It is probable that the low intra-population variability is related with the paleoenvironmental fluctuation in Qiadam Basin, suggesting that the populations from Qiadam Basin have experienced severe bottleneck events in history.3. Phylogenetic tree topologies indicate that the individuals from different populations did not form reciprocal monophyly, but the populations from the adjacent drainages cluster geographically. Most population pairwise F-ST tests were significant, with non-significant pairwise tests between Tuosu Lake and Tuosuo Lake in the north-west of the Qinghai-Tibetan Plateau. Analysis of molecular variance (AMOVA) indicates that the significant genetic variation was explained at the levels of catchments within and among, not among specific boundaries or inflow and outflow drainage systems.4. The nested clade phylogeographical analysis indicates that historical processes are very important in the observed geographical structuring of S. pylzovi, and the contemporary population structure and differentiation of S. pylzovi may be consistent with the historical tectonic events occurred in the course of uplifts of the Qinghai-Tibetan Plateau. Fluctuations of the ecogeographical environment and major hydrographic formation might have promoted contiguous range expansion of freshwater fish populations, whereas the geological barriers among drainages have resulted in the fragmentation of population and restricted the gene flow among populations.5. The significantly large negative F-s-value (-24.91, P < 0.01) of Fu's F-s-test and the unimodal mismatch distribution indicate that the species S. pylzovi underwent a sudden population expansion after the historical tectonic event of the Gonghe Movement.6. The results of this study indicate that each population from the Qinghai-Tibetan Plateau should be managed and conserved separately and that efforts should be directed towards preserving the genetic integrity of each group.
Resumo:
Knowledge of the levels of genetic diversity maintained in natural populations can play a central role in conservation programmes, particularly in threatened habitats or species. Fluctuations in population size can lead to loss of variation and, consequently, increase the risk of extinction. We have examined whether such a genetic bottleneck has occurred in populations of two species in the seagrass genus Zostera, which are believed to have been affected by an outbreak of wasting disease at the start of the last century. A test for heterozygote excess at five nuclear microsatellite loci did not suggest the occurrence of a genetic bottleneck, but analysis of seven chloroplast microsatellite loci and sequence data from two regions did suggest a bottleneck in the chloroplast genome. Extremely low levels of between-population diversity suggest that all subpopulations can be treated as a single management unit for each species. Comparable levels of nuclear genetic diversity were found in the three populations of the primarily sexual Zostera marina var. angustifolia studied but a wider range of within-population diversity was found in Zostera noltii, which displays both. sexual and vegetative reproductive strategies. This may be due to an increase in sexual recruitment due to localised fresh water inflow into the study site near to the most diverse population. Such populations should be prioritised as source material for any replanting or remediation due to natural or anthropogenic loss of Zostera beds in the area.
Resumo:
In some fishes, water chemistry or temperature affects sex determination or creates sex-specific selection pressures. The resulting population sex ratios are hard to predict from laboratory studies if the environmental triggers interact with other factors, whereas in field studies, singular observations of unusual sex ratios may be particularly prone to selective reporting. Long-term monitoring largely avoids these problems. We studied a population of grayling (Thymallus thymallus) in Lake Thun, Switzerland, that has been monitored since 1948. Samples of spawning fish have been caught about 3 times/week around spawning season, and water temperature at the spawning site has been continuously recorded since 1970. We used scale samples collected in different years to determine the average age of spawners (for life-stage specific analyses) and to identify the cohort born in 2003 (an extraordinarily warm year). Recent tissue samples were genotyped on microsatellite markers to test for genetic bottlenecks in the past and to estimate the genetically effective population size (N(e) ). Operational sex ratios changed from approximately 65% males before 1993 to approximately 85% males from 1993 to 2011. Sex ratios correlated with the water temperatures the fish experienced in their first year of life. Sex ratios were best explained by the average temperature juvenile fish experienced during their first summer. Grayling abundance is declining, but we found no evidence of a strong genetic bottleneck that would explain the apparent lack of evolutionary response to the unequal sex ratio. Results of other studies show no evidence of endocrine disruptors in the study area. Our findings suggest temperature affects population sex ratio and thereby contributes to population decline. Persistencia de Proporción de Sexos Desigual en una Población de Tímalos (Salmonidae) y el Posible Papel del Incremento de la Temperatura.
Resumo:
To provide data for conservation, selection, and expansion programs of buffalo herds, this study evaluated the history of a population of Murrah buffaloes based on population structure and the effect of inbreeding on accumulated 305-d milk yield (MY), fat yield (FY), protein yield (PY), mozzarella production (MProd), and somatic cell score (SCS). The usefulness of including the individual inbreeding coefficient (F) or individual increase in inbreeding coefficient (Delta F) in the model to describe inbreeding depression was evaluated. Pedigree information from 8,054 animals born between 1976 and 2008 and 4,497 lactation records obtained from 12 herds were used. The realized effective population size was 40.10 +/- 1.27, and the mean F of the entire population was 2.14%. The ratio between the number of founders and ancestors demonstrated the existence of a bottleneck in the pedigree of this population, which may contribute to a reduction of genetic diversity. The effect of F on MY, FY, PY, MProd, and SCS was -1.005 kg, -0.299 kg, -0.246 kg, -1.201 kg, and -0.002 units, and the effect of Delta F transformed to equivalent F (%) for a mean of 2.57 equivalent generations was -4.287 kg, -0.581 kg, -0.383 kg, -2.001 kg, and -0.007 units, respectively. The inbreeding depression observed may have important economic repercussions for production systems. The Delta F can be considered the better of the two indicators of inbreeding depression due to its properties that prevent underestimation of this effect. A designed mating system to avoid inbreeding may be applied to this population to maintain genetic diversity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Toxicant inputs from agriculture, industry and human settlements have been shown to severely affect freshwater ecosystems. Pollution can lead to changes in population genetic patterns through various genetic and stochastic processes. In my thesis, I investigated the impact of anthropogenic stressors on the population genetics of the zebra mussel Dreissena polymorpha. In order to analyze the genetics of zebra mussel populations, I isolated five new highly polymorphic microsatellite loci. Out of those and other already existing microsatellite markers for this species, I established a robust marker set of six microsatellite loci for D. polymorpha. rnMonitoring the biogeographical background is an important requirement when integrating population genetic measures into ecotoxicological studies. I analyzed the biogeographical background of eleven populations in a section of the River Danube (in Hungary and Croatia) and some of its tributaries, and another population in the River Rhine as genetic outgroup. Moreover, I measured abiotic water parameters at the sampling sites and analyzed if they were correlated with the genetic parameters of the populations. The genetic differentiation was basically consistent with the overall biogeographical history of the populations in the study region. However, the genetic diversity of the populations was not influenced by the geographical distance between the populations, but by the environmental factors oxygen and temperature and also by other unidentified factors. I found strong evidence that genetic adaptation of zebra mussel populations to local habitat conditions had influenced the genetic constitution of the populations. Moreover, by establishing the biogeographical baseline of molecular variance in the study area, I laid the foundation for interpreting population genetic results in ecotoxicological experiments in this region.rnIn a cooperation project with the Department of Zoology of the University of Zagreb, I elaborated an integrated approach in biomonitoring with D. polymorpha by combining the analysis techniques of microsatellite analysis, Comet assay and micronucleus test (MNT). This approach was applied in a case study on freshwater contamination by an effluent of a wastewater treatment plant (WWTP) in the River Drava (Croatia) and a complementary laboratory experiment. I assessed and compared the genetic status of two zebra mussel populations from a contaminated and a reference site. Microsatellite analysis suggested that the contaminated population had undergone a genetic bottleneck, caused by random genetic drift and selection, whereas a bottleneck was not detected in the reference population. The Comet assay did not indicate any difference in DNA damage between the two populations, but MNT revealed that the contaminated population had an increased percentage of micronuclei in hemocytes in comparison to the reference population. The laboratory experiment with mussels exposed to municipal wastewater revealed that mussels from the contaminated site had a lower percentage of tail DNA and a higher percentage of micronuclei than the reference population. These differences between populations were probably caused by an overall decreased fitness of mussels from the contaminated site due to genetic drift and by an enhanced DNA repair mechanism due to adaptation to pollution in the source habitat. Overall, the combination of the three biomarkers provided sufficient information on the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization.rnIn my thesis, I could show that the newly established marker set of six microsatellite loci provided reliable and informative data for population genetic analyses of D. polymorpha. The adaptation of the analyzed zebra mussel populations to the local conditions of their habitat had a strong influence on their genetic constitution. We found evidence that the different genetic constitutions of two populations had influenced the outcome of our ecotoxicological experiment. Overall, the integrated approach in biomonitoring gave comprehensive information about the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization and was well practicable in a first case study.