22 resultados para polyploidization
Resumo:
P>Outcrossing Arabidopsis species that diverged from their inbreeding relative Arabidopsis thaliana 5 million yr ago and display a biogeographical pattern of interspecific sympatry vs intraspecific allopatry provides an ideal model for studying impacts of gene introgression and polyploidization on species diversification. Flow cytometry analyses detected ploidy polymorphisms of 2x and 4x in Arabidopsis lyrata ssp. kamchatica of Taiwan. Genomic divergence between species/subspecies was estimated based on 98 randomly chosen nuclear genes. Multilocus analyses revealed a mosaic genome in diploid A. l. kamchatica composed of Arabidopsis halleri-like and A. lyrata-like alleles. Coalescent analyses suggest that the segregation of ancestral polymorphisms alone cannot explain the high inconsistency between gene trees across loci, and that gene introgression via diploid A. l. kamchatica likely distorts the molecular phylogenies of Arabidopsis species. However, not all genes migrated across species freely. Gene ontology analyses suggested that some nonmigrating genes were constrained by natural selection. High levels of estimated ancestral polymorphisms between A. halleri and A. lyrata suggest that gene flow between these species has not completely ceased since their initial isolation. Polymorphism data of extant populations also imply recent gene flow between the species. Our study reveals that interspecific gene flow affects the genome evolution in Arabidopsis.
Resumo:
OBJECTIVE: Chromosomal instability is a key feature in hepatocellular carcinoma (HCC). Array comparative genomic hybridization (aCGH) revealed recurring structural aberrations, whereas fluorescence in situ hybridization (FISH) indicated an increasing number of numerical aberrations in dedifferentiating HCC. Therefore, we examined whether there was a correlation between structural and numerical aberrations of chromosomal instability in HCC. METHODS AND RESULTS: 27 HCC (5 well, 10 moderately, 12 lower differentiated) already cytogenetically characterized by aCGH were analyzed. FISH analysis using probes for chromosomes 1, 3, 7, 8 and 17 revealed 1.46-4.24 signals/nucleus, which correlated with the histological grade (well vs. moderately,p < 0.0003; moderately vs. lower, p < 0.004). The number of chromosomes to each other was stable with exceptions only seen for chromosome 8. Loss of 4q and 13q, respectively, were correlated with the number of aberrations detected by aCGH (p < 0.001, p < 0.005; Mann-Whitney test). Loss of 4q and gain of 8q were correlated with an increasing number of numerical aberrations detected by FISH (p < 0.020, p < 0.031). Loss of 8p was correlated with the number of structural imbalances seen in aCGH (p < 0.048), but not with the number of numerical changes seen in FISH. CONCLUSION: We found that losses of 4q, 8p and 13q were closely correlated with an increasing number of aberrations detected by aCGH, whereas a loss of 4q and a gain of 8q were also observed in the context of polyploidization, the cytogenetic correlate of morphological dedifferentiation.
Resumo:
Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci recently doubled by polyploidy (homoeologues) has not been studied. Here we use locus-specific isolation techniques with comparative mapping to characterize the evolution of homoeologous loci in allopolyploid cotton (Gossypium hirsutum) and in species representing its diploid progenitors. We isolated and sequenced 16 loci from both genomes of the allopolyploid, from both progenitor diploid genomes and appropriate outgroups. Phylogenetic analysis of the resulting 73.5 kb of sequence data demonstrated that for all 16 loci (14.7 kb/genome), the topology expected from organismal history was recovered. In contrast to observations involving repetitive DNAs in cotton, there was no evidence of interaction among duplicated genes in the allopolyploid. Polyploidy was not accompanied by an obvious increase in mutations indicative of pseudogene formation. Additionally, differences in rates of divergence among homoeologues in polyploids and orthologues in diploids were indistinguishable across loci, with significant rate deviation restricted to two putative pseudogenes. Our results indicate that most duplicated genes in allopolyploid cotton evolve independently of each other and at the same rate as those of their diploid progenitors. These indications of genic stasis accompanying polyploidization provide a sharp contrast to recent examples of rapid genomic evolution in allopolyploids.
Resumo:
The fate of redundant genes resulting from genome duplication is poorly understood. Previous studies indicated that ribosomal RNA genes from one parental origin are epigenetically silenced during interspecific hybridization or polyploidization. Regulatory mechanisms for protein-coding genes in polyploid genomes are unknown, partly because of difficulty in studying expression patterns of homologous genes. Here we apply amplified fragment length polymorphism (AFLP)–cDNA display to perform a genome-wide screen for orthologous genes silenced in Arabidopsis suecica, an allotetraploid derived from Arabidopsis thaliana and Cardaminopsis arenosa. We identified ten genes that are silenced from either A. thaliana or C. arenosa origin in A. suecica and located in four of the five A. thaliana chromosomes. These genes represent a variety of RNA and predicted proteins including four transcription factors such as TCP3. The silenced genes in the vicinity of TCP3 are hypermethylated and reactivated by blocking DNA methylation, suggesting epigenetic regulation is involved in the expression of orthologous genes in polyploid genomes. Compared with classic genetic mutations, epigenetic regulation may be advantageous for selection and adaptation of polyploid species during evolution and development.
Resumo:
Although the evolutionary success of polyploidy in higher plants has been widely recognized, there is virtually no information on how polyploid genomes have evolved after their formation. In this report, we used synthetic polyploids of Brassica as a model system to study genome evolution in the early generations after polyploidization. The initial polyploids we developed were completely homozygous, and thus, no nuclear genome changes were expected in self-fertilized progenies. However, extensive genome change was detected by 89 nuclear DNA clones used as probes. Most genome changes involved loss and/or gain of parental restriction fragments and appearance of novel fragments. Genome changes occurred in each generation from F2 to F5, and the frequency of change was associated with divergence of the diploid parental genomes. Genetic divergence among the derivatives of synthetic polyploids was evident from variation in genome composition and phenotypes. Directional genome changes, possibly influenced by cytoplasmic-nuclear interactions, were observed in one pair of reciprocal synthetics. Our results demonstrate that polyploid species can generate extensive genetic diversity in a short period of time. The occurrence and impact of this process in the evolution of natural polyploids is unknown, but it may have contributed to the success and diversification of many polyploid lineages in both plants and animals.
Resumo:
without practical results so far. Protocols used in biotechnological cultured aquatic organisms aimed at increasing growth rates and disease resistance, have been studied and perfected. Among the available techniques, the application of chromosomal manipulation, although still nascent, is presented as a tool aimed at mitigating ecological and economical issues in shrimp farming. The polyploidization artificial method already employed in fish and shellfish, has been widely researched for use in farmed shrimp. Some limitations of this method of expansion in shrimp refer to a better knowledge of cytogenetic aspects, the level of sexual dimorphism and performance in growing conditions. To contribute on some of these issues, the present study aimed to characterize cytogenetic species Litopenaeus vannamei (Decapoda) and Artemia franciscana (Anostraca), analyze the effectiveness of methods for detection of ploidy, through the use of flow cytometry in processes of induction polyploidy cold thermal shock at different stages of development of newly fertilized eggs. Additionally, aimed also the qualitative and quantitative comparison of larval development between diploid and polyploid organisms, besides the identification of sexual dimorphism in L. vannamei, through geometric morphometrics. The results provide information relevant to the improvement and widespread use of biotechnological methods applied toward national productivity in shrimp farming
Resumo:
Aquatic plants of the genus Ruppia inhabit some of the most threatened habitats in the world, such as coastal lagoons and inland saline to brackish waters where their meadows play several key roles. The evolutionary history of this genus has been affected by the processes of hybridization, polyploidization, and vicariance, which have resulted in uncertainty regarding the number of species. In the present study, we apply microsatellite markers for the identification, genetic characterization, and detection of hybridization events among populations of putative Ruppia species found in the southern Iberian Peninsula, with the exception of a clearly distinct species, the diploid Ruppia maritima. Microsatellite markers group the populations into genetically distinct entities that are not coincident with geographical location and contain unique diagnostic alleles. These results support the interpretation of these entities as distinct species: designated here as (1) Ruppia drepanensis, (2) Ruppia cf. maritima, and (3) Ruppia cirrhosa. A fourth distinct genetic entity was identified as a putative hybrid between R. cf. maritima and R. cirrhosa because it contained a mixture of microsatellite alleles that are otherwise unique to these putative species. Hence, our analyses were able to discriminate among different genetic entities of Ruppia and, by adding multilocus nuclear markers, we confirm hybridization as an important process of speciation within the genus. In addition, careful taxonomic curation of the samples enabled us to determine the genotypic and genetic diversity and differentiation among populations of each putative Ruppia species. This will be important for identifying diversity hotspots and evaluating patterns of population genetic connectivity. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.