134 resultados para polyphosphate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of a newly isolated environmental strain of Candida humicola accumulated 10-fold more polyphosphate (polyP), during active growth, when grown in complete glucose-mineral salts medium at pH 5.5 than when grown at pH 7.5. Neither phosphate starvation, nutrient limitation, nor anaerobiosis was required to induce polyP formation. An increase in intracellular polyP was accompanied by a 4.5-fold increase in phosphate uptake from the medium and sixfold-higher levels of cellular polyphosphate kinase activity. This novel accumulation of polyP by C. humicola G-1 in response to acid pH provides further evidence as to the importance of polyP in the physiological adaptation of microbial cells during growth and development and in their response to environmental stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced phosphate removal from wastewaters is dependent on the synthesis and intracellular accumulation of polyphosphate by sludge microorganisms. However the role played by polyphosphate in microbial metabolism and the factors that trigger its formation remain poorly-understood. Many examples of the accumulation of the biopolymer by environmental microorganisms are documented; these include a recent report of the presence of large polyphosphate inclusions in sulfur-oxidizing marine bacteria. To investigate whether any link might exist outside the marine environment between the presence of reduced sulfur compounds and enhanced levels of microbial phosphate uptake and polyphosphate accumulation, activated sludge cultures were grown under laboratory conditions in media that contained sulfite, thiosulfate, hydrosulfite or tetrathionate. Only in the presence of sulfite was there any evidence of a stimulatory effect; in medium that contained 0.5 mM sodium sulfite some 17% more phosphate was removed by the sludge, whilst there was an almost two-fold increase in intracellular polyphosphate levels. No indications of sulfite toxicity were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) is increasingly being recognized as an important phosphorus sink within the environment, playing a central role in phosphorus exchange and phosphogenesis. Yet despite the significant advances made in polyP research there is a lack of rapid and efficient analytical approaches for the quantification of polyP accumulation in microbial cultures and environmental samples. A major drawback is the need to extract polyP from cells prior to analysis. Due to extraction inefficiencies this can lead to an underestimation of both intracellular polyP levels and its environmental pool size: we observed 23-58% loss of polyP using standard solutions and current protocols. Here we report a direct fluorescence based DAPI assay system which removes the requirement for prior polyP extraction before quantification. This increased the efficiency of polyP detection by 28-55% in microbial cultures suggesting quantitative measurement of the intracellular polyP pool. It provides a direct polyP assay which combines quantification capability with technical simplicity. This is an important step forward in our ability to explore the role of polyP in cellular biology and biogeochemical nutrient cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyphosphate is a ubiquitous linear homopolymer of phosphate residues linked by high-energy bonds similar to those found in ATP. It has been associated with many processes including pathogenicity, DNA uptake and multiple stress responses across all domains. Bacteria have also been shown to use polyphosphate as a way to store phosphate when transferred from phosphate-limited to phosphate-rich media - a process exploited in wastewater treatment and other environmental contaminant remediation. Despite this, there has, to date, been little research into the role of polyphosphate in the survival of marine bacterioplankton in oligotrophic environments. The three main proteins involved in polyphosphate metabolism, Ppk1, Ppk2 and Ppx are multi-domain and have differential inter-domain and inter-gene conservation, making unbiased analysis of relative abundance in metagenomic datasets difficult. This paper describes the development of a novel Isofunctional Homolog Annotation Tool (IHAT) to detect homologs of genes with a broad range of conservation without bias of traditional expect-value cutoffs. IHAT analysis of the Global Ocean Sampling (GOS) dataset revealed that genes associated with polyphosphate metabolism are more abundant in environments where available phosphate is limited, suggesting an important role for polyphosphate metabolism in marine oligotrophs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present invention provides, among other things, phosphorylated and pyrophosphate derivatives of mono-, di- and oligosaccharides, as well as structural derivatives of these compounds. These compounds have a variety of uses including for pharmaceutical applications. Also provided are methods of use in the treatment of disease, including diseases related to oxygen delivery

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles is not known. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, shows that cytosolic polyP cannot be imported, whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which are likely to constitute the translocation channel, block not only polyP translocation but also synthesis. Given that they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP might be one reason for the existence of acidocalcisomes in eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphate (Pi) is one among the most important essential residues in maintenance and inheritance of life, with far diverse physiological role as structural, functional and energy transduction. Phosphate accumulation in wastewaters containing run off of fertilizers and industrial discharges is a global problem that results in algal blooms in bays, lakes and waterways. Currently available methods for removing phosphates from wastewater are based primarily on polyP accumulation by the activated sludge bacteria. PolyP plays a critical role in several environmental and biotechnological problems. Possible relation of interaction between polyP accumulation phenomenon, the low biomass, low Pi uptake, and varying results obtained in response to the impact of sodium chloride, pH, temperature, various inorganic salts and additional carbon sources studied, are all intriguing observations in the present investigation. The results of the present study have evidenced very clearly the scope for potential strains of bacteria from both sea water and marine sediments which could be exploited both for Pi removal in wastewater released by industries and intensive aquaculture practices in to the aquatic environment as well as to harness the potential strains for industrial production of polyP which was wide range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify genes involved in poly(A) metabolism, we screened the yeast gene deletion collection for growth defects in the presence of cordycepin (3′-deoxyadenosine), a precursor to the RNA chain terminating ATP analog cordycepin triphosphate. Δpho80 and Δpho85 strains, which have a constitutively active phosphate-response pathway, were identified as cordycepin hypersensitive. We show that inorganic polyphosphate (poly P) accumulated in these strains and that poly P is a potent inhibitor of poly(A) polymerase activity in vitro. Binding analyses of poly P and yeast Pap1p revealed an interaction with a kD in the low nanomolar range. Poly P also bound mammalian poly(A) polymerase, however, with a 10-fold higher kD compared to yeast Pap1p. Genetic tests with double mutants of Δpho80 and other genes involved in phosphate homeostasis and poly P accumulation suggest that poly P contributed to cordycepin hypersensitivity. Synergistic inhibition of mRNA synthesis through poly P-mediated inhibition of Pap1p and through cordycepin-mediated RNA chain termination may thus account for hypersensitive growth of Δpho80 and Δpho85 strains in the presence of the chain terminator. Consistent with this, a mutation in the 3′-end formation component rna14 was synthetic lethal in combination with Δpho80. Based on these observations, we suggest that binding of poly P to poly(A) polymerase negatively regulates its activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new organic-inorganic hybrid material has been synthesized by the incorporation of croconate ion into a calcium polyphosphate coacervate. The hybrid so obtained was characterized by means of electronic and vibrational spectroscopies. The material is a homogeneous mixture described by a structural model, which includes helical chains of polyphosphate ions, where the calcium ion occupies the internal vacancies of the structure. The croconate ion appears to be occupying the regions outside the polymeric structure, surrounded by several water molecules. The electronic spectrum of the incorporated material shows a broad band peaking at the same wavelength region (363 nm) observed for the aqueous solution of croconate ion, and manifesting the Jahn-Teller effect as evidenced by the doublet structure of the band. The infrared spectrum is widely dominated by the absorption bands of the polyphosphate ion and the appearance of the carbonyl stretching band at ca. 1550 cm(-1) indicates the presence of croconate ion incorporated in the structure. The Raman spectrum of the material shows several vibrational bands related to the oxocarbon moiety; most of them are shifted in comparison with the free ion. These shifts can be understood in terms of strong hydrogen bonding interactions between water molecules and the oxocarbon moiety. The low temperature methodology proposed here can be well used in the preparation of new phosphate glasses containing organic moieties opening the route to an entirely new class of hybrid glasses. (c) 2004 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the ultrafast nonlinearity of antimony polyphosphate glasses measured using the Kerr shutter technique. The nonlinear refractive index, n(2), was (1.1+/-0.2)x10(-14) cm(2)/W at 800 nm, and enhancement of n(2) by approximate to80% was observed by adding 10% of lead oxide in the glass composition. The full width at half-maximum of the third-order correlation signal was 150 fs, which implies a fast response of the samples (less than or equal to100 fs). Nonlinear absorption was negligible in the range of intensities used. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between metaphosphate chains and the metal ions Ca2+ and Eu3+ has been studied in water by Eu3+ luminescence, infrared absorption, and P-31 NMR spectroscopy. Two main families of sites could be identified for the metal ions in the aqueous polyphosphate colloidal systems: (1) cagelike sites provided by the polyphosphate chain and (2) a family which arises following saturation of cagelike sites. Occupation of this second family leads to supramolecular interactions between polyphosphate chains and the consequent destabilization of the colloidal system. In the polyphosphate-Ca2+ system, this destabilization appears as a coacervation process. Equilibrium existing between colloidal species as a function of the compositions could be reasoned based on the spectroscopic measurements. The determination of coordination numbers and the correlation of the results with the observation of coacervates show that Eu3+ luminescence properties can be used to probe in a unique way the coacervation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A photocontraction effect in amorphous films of the binary glass system 0.20 [Sb(PO3)(3)](n)-0.80 Sb2O3 has been observed after UV irradiation using the 350.7 nm Kr+ ion laser line with 5.0 W/cm(2). Good optical quality films up to 4.0 mum were deposited on silica substrates at room temperature in vacuum by electron beam physical vapor deposition (EB-PVD) and characterized using WDX, XRD, optical absorption, infrared reflectance, profilometry and atomic force microscopy (AFM) techniques. Very stable glasses were prepared by the melt quenching technique and used as evaporation source for the production of films. The photoinduced structural change (PSC) was observed as a variation of about 6% in the film thickness and this effect is accompanied by a photobleaching of the irradiated area with a blue shift of the optical absorption edge. Otherwise this photoinduced change in the film thickness is very sensitive to the variations in the shape and intensity of the laser beam; therefore several possibilities in optical recording arise from these results. (C) 2003 Published by Elsevier B.V.